This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative of a negative integer, is a natural number. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | znnn0nn | |- ( ( N e. ZZ /\ -. N e. NN0 ) -> -u N e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( N e. ZZ /\ -. N e. NN0 ) -> N e. ZZ ) |
|
| 2 | 1 | znegcld | |- ( ( N e. ZZ /\ -. N e. NN0 ) -> -u N e. ZZ ) |
| 3 | elznn | |- ( -u N e. ZZ <-> ( -u N e. RR /\ ( -u N e. NN \/ -u -u N e. NN0 ) ) ) |
|
| 4 | 2 3 | sylib | |- ( ( N e. ZZ /\ -. N e. NN0 ) -> ( -u N e. RR /\ ( -u N e. NN \/ -u -u N e. NN0 ) ) ) |
| 5 | 4 | simprd | |- ( ( N e. ZZ /\ -. N e. NN0 ) -> ( -u N e. NN \/ -u -u N e. NN0 ) ) |
| 6 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 7 | 6 | adantr | |- ( ( N e. ZZ /\ -. N e. NN0 ) -> N e. CC ) |
| 8 | 7 | negnegd | |- ( ( N e. ZZ /\ -. N e. NN0 ) -> -u -u N = N ) |
| 9 | simpr | |- ( ( N e. ZZ /\ -. N e. NN0 ) -> -. N e. NN0 ) |
|
| 10 | 8 9 | eqneltrd | |- ( ( N e. ZZ /\ -. N e. NN0 ) -> -. -u -u N e. NN0 ) |
| 11 | pm2.24 | |- ( -u -u N e. NN0 -> ( -. -u -u N e. NN0 -> -u N e. NN ) ) |
|
| 12 | 11 | jao1i | |- ( ( -u N e. NN \/ -u -u N e. NN0 ) -> ( -. -u -u N e. NN0 -> -u N e. NN ) ) |
| 13 | 5 10 12 | sylc | |- ( ( N e. ZZ /\ -. N e. NN0 ) -> -u N e. NN ) |