This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ordering of the Z/nZ structure. (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znle2.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| znle2.f | ⊢ 𝐹 = ( ( ℤRHom ‘ 𝑌 ) ↾ 𝑊 ) | ||
| znle2.w | ⊢ 𝑊 = if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) | ||
| znle2.l | ⊢ ≤ = ( le ‘ 𝑌 ) | ||
| znleval.x | ⊢ 𝑋 = ( Base ‘ 𝑌 ) | ||
| Assertion | znleval | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znle2.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| 2 | znle2.f | ⊢ 𝐹 = ( ( ℤRHom ‘ 𝑌 ) ↾ 𝑊 ) | |
| 3 | znle2.w | ⊢ 𝑊 = if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) | |
| 4 | znle2.l | ⊢ ≤ = ( le ‘ 𝑌 ) | |
| 5 | znleval.x | ⊢ 𝑋 = ( Base ‘ 𝑌 ) | |
| 6 | 1 2 3 4 | znle2 | ⊢ ( 𝑁 ∈ ℕ0 → ≤ = ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ) |
| 7 | relco | ⊢ Rel ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) | |
| 8 | relssdmrn | ⊢ ( Rel ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) → ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ⊆ ( dom ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) × ran ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ) ) | |
| 9 | 7 8 | ax-mp | ⊢ ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ⊆ ( dom ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) × ran ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ) |
| 10 | dmcoss | ⊢ dom ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ⊆ dom ◡ 𝐹 | |
| 11 | df-rn | ⊢ ran 𝐹 = dom ◡ 𝐹 | |
| 12 | 1 5 2 3 | znf1o | ⊢ ( 𝑁 ∈ ℕ0 → 𝐹 : 𝑊 –1-1-onto→ 𝑋 ) |
| 13 | f1ofo | ⊢ ( 𝐹 : 𝑊 –1-1-onto→ 𝑋 → 𝐹 : 𝑊 –onto→ 𝑋 ) | |
| 14 | forn | ⊢ ( 𝐹 : 𝑊 –onto→ 𝑋 → ran 𝐹 = 𝑋 ) | |
| 15 | 12 13 14 | 3syl | ⊢ ( 𝑁 ∈ ℕ0 → ran 𝐹 = 𝑋 ) |
| 16 | 11 15 | eqtr3id | ⊢ ( 𝑁 ∈ ℕ0 → dom ◡ 𝐹 = 𝑋 ) |
| 17 | 10 16 | sseqtrid | ⊢ ( 𝑁 ∈ ℕ0 → dom ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ⊆ 𝑋 ) |
| 18 | rncoss | ⊢ ran ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ⊆ ran ( 𝐹 ∘ ≤ ) | |
| 19 | rncoss | ⊢ ran ( 𝐹 ∘ ≤ ) ⊆ ran 𝐹 | |
| 20 | 19 15 | sseqtrid | ⊢ ( 𝑁 ∈ ℕ0 → ran ( 𝐹 ∘ ≤ ) ⊆ 𝑋 ) |
| 21 | 18 20 | sstrid | ⊢ ( 𝑁 ∈ ℕ0 → ran ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ⊆ 𝑋 ) |
| 22 | xpss12 | ⊢ ( ( dom ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ⊆ 𝑋 ∧ ran ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ⊆ 𝑋 ) → ( dom ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) × ran ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ) ⊆ ( 𝑋 × 𝑋 ) ) | |
| 23 | 17 21 22 | syl2anc | ⊢ ( 𝑁 ∈ ℕ0 → ( dom ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) × ran ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 24 | 9 23 | sstrid | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 25 | 6 24 | eqsstrd | ⊢ ( 𝑁 ∈ ℕ0 → ≤ ⊆ ( 𝑋 × 𝑋 ) ) |
| 26 | 25 | ssbrd | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ≤ 𝐵 → 𝐴 ( 𝑋 × 𝑋 ) 𝐵 ) ) |
| 27 | brxp | ⊢ ( 𝐴 ( 𝑋 × 𝑋 ) 𝐵 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) | |
| 28 | 26 27 | imbitrdi | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ≤ 𝐵 → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) ) |
| 29 | 28 | pm4.71rd | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ≤ 𝐵 ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≤ 𝐵 ) ) ) |
| 30 | 6 | adantr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ≤ = ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ) |
| 31 | 30 | breqd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 ≤ 𝐵 ↔ 𝐴 ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) 𝐵 ) ) |
| 32 | brcog | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) 𝐵 ↔ ∃ 𝑥 ( 𝐴 ◡ 𝐹 𝑥 ∧ 𝑥 ( 𝐹 ∘ ≤ ) 𝐵 ) ) ) | |
| 33 | 32 | adantl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) 𝐵 ↔ ∃ 𝑥 ( 𝐴 ◡ 𝐹 𝑥 ∧ 𝑥 ( 𝐹 ∘ ≤ ) 𝐵 ) ) ) |
| 34 | eqcom | ⊢ ( 𝑥 = ( ◡ 𝐹 ‘ 𝐴 ) ↔ ( ◡ 𝐹 ‘ 𝐴 ) = 𝑥 ) | |
| 35 | 12 | adantr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐹 : 𝑊 –1-1-onto→ 𝑋 ) |
| 36 | f1ocnv | ⊢ ( 𝐹 : 𝑊 –1-1-onto→ 𝑋 → ◡ 𝐹 : 𝑋 –1-1-onto→ 𝑊 ) | |
| 37 | f1ofn | ⊢ ( ◡ 𝐹 : 𝑋 –1-1-onto→ 𝑊 → ◡ 𝐹 Fn 𝑋 ) | |
| 38 | 35 36 37 | 3syl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ◡ 𝐹 Fn 𝑋 ) |
| 39 | simprl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 40 | fnbrfvb | ⊢ ( ( ◡ 𝐹 Fn 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( ◡ 𝐹 ‘ 𝐴 ) = 𝑥 ↔ 𝐴 ◡ 𝐹 𝑥 ) ) | |
| 41 | 38 39 40 | syl2anc | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ◡ 𝐹 ‘ 𝐴 ) = 𝑥 ↔ 𝐴 ◡ 𝐹 𝑥 ) ) |
| 42 | 34 41 | bitr2id | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 ◡ 𝐹 𝑥 ↔ 𝑥 = ( ◡ 𝐹 ‘ 𝐴 ) ) ) |
| 43 | 42 | anbi1d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 ◡ 𝐹 𝑥 ∧ 𝑥 ( 𝐹 ∘ ≤ ) 𝐵 ) ↔ ( 𝑥 = ( ◡ 𝐹 ‘ 𝐴 ) ∧ 𝑥 ( 𝐹 ∘ ≤ ) 𝐵 ) ) ) |
| 44 | 43 | exbidv | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ∃ 𝑥 ( 𝐴 ◡ 𝐹 𝑥 ∧ 𝑥 ( 𝐹 ∘ ≤ ) 𝐵 ) ↔ ∃ 𝑥 ( 𝑥 = ( ◡ 𝐹 ‘ 𝐴 ) ∧ 𝑥 ( 𝐹 ∘ ≤ ) 𝐵 ) ) ) |
| 45 | 33 44 | bitrd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) 𝐵 ↔ ∃ 𝑥 ( 𝑥 = ( ◡ 𝐹 ‘ 𝐴 ) ∧ 𝑥 ( 𝐹 ∘ ≤ ) 𝐵 ) ) ) |
| 46 | fvex | ⊢ ( ◡ 𝐹 ‘ 𝐴 ) ∈ V | |
| 47 | breq1 | ⊢ ( 𝑥 = ( ◡ 𝐹 ‘ 𝐴 ) → ( 𝑥 ( 𝐹 ∘ ≤ ) 𝐵 ↔ ( ◡ 𝐹 ‘ 𝐴 ) ( 𝐹 ∘ ≤ ) 𝐵 ) ) | |
| 48 | 46 47 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥 = ( ◡ 𝐹 ‘ 𝐴 ) ∧ 𝑥 ( 𝐹 ∘ ≤ ) 𝐵 ) ↔ ( ◡ 𝐹 ‘ 𝐴 ) ( 𝐹 ∘ ≤ ) 𝐵 ) |
| 49 | simprr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) | |
| 50 | brcog | ⊢ ( ( ( ◡ 𝐹 ‘ 𝐴 ) ∈ V ∧ 𝐵 ∈ 𝑋 ) → ( ( ◡ 𝐹 ‘ 𝐴 ) ( 𝐹 ∘ ≤ ) 𝐵 ↔ ∃ 𝑥 ( ( ◡ 𝐹 ‘ 𝐴 ) ≤ 𝑥 ∧ 𝑥 𝐹 𝐵 ) ) ) | |
| 51 | 46 49 50 | sylancr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ◡ 𝐹 ‘ 𝐴 ) ( 𝐹 ∘ ≤ ) 𝐵 ↔ ∃ 𝑥 ( ( ◡ 𝐹 ‘ 𝐴 ) ≤ 𝑥 ∧ 𝑥 𝐹 𝐵 ) ) ) |
| 52 | fvex | ⊢ ( ◡ 𝐹 ‘ 𝐵 ) ∈ V | |
| 53 | breq2 | ⊢ ( 𝑥 = ( ◡ 𝐹 ‘ 𝐵 ) → ( ( ◡ 𝐹 ‘ 𝐴 ) ≤ 𝑥 ↔ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ) | |
| 54 | 52 53 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥 = ( ◡ 𝐹 ‘ 𝐵 ) ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ 𝑥 ) ↔ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) |
| 55 | eqcom | ⊢ ( 𝑥 = ( ◡ 𝐹 ‘ 𝐵 ) ↔ ( ◡ 𝐹 ‘ 𝐵 ) = 𝑥 ) | |
| 56 | fnbrfvb | ⊢ ( ( ◡ 𝐹 Fn 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ◡ 𝐹 ‘ 𝐵 ) = 𝑥 ↔ 𝐵 ◡ 𝐹 𝑥 ) ) | |
| 57 | 38 49 56 | syl2anc | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ◡ 𝐹 ‘ 𝐵 ) = 𝑥 ↔ 𝐵 ◡ 𝐹 𝑥 ) ) |
| 58 | 55 57 | bitrid | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑥 = ( ◡ 𝐹 ‘ 𝐵 ) ↔ 𝐵 ◡ 𝐹 𝑥 ) ) |
| 59 | vex | ⊢ 𝑥 ∈ V | |
| 60 | brcnvg | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ 𝑥 ∈ V ) → ( 𝐵 ◡ 𝐹 𝑥 ↔ 𝑥 𝐹 𝐵 ) ) | |
| 61 | 49 59 60 | sylancl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐵 ◡ 𝐹 𝑥 ↔ 𝑥 𝐹 𝐵 ) ) |
| 62 | 58 61 | bitrd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑥 = ( ◡ 𝐹 ‘ 𝐵 ) ↔ 𝑥 𝐹 𝐵 ) ) |
| 63 | 62 | anbi1d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝑥 = ( ◡ 𝐹 ‘ 𝐵 ) ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ 𝑥 ) ↔ ( 𝑥 𝐹 𝐵 ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ 𝑥 ) ) ) |
| 64 | 63 | biancomd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝑥 = ( ◡ 𝐹 ‘ 𝐵 ) ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ 𝑥 ) ↔ ( ( ◡ 𝐹 ‘ 𝐴 ) ≤ 𝑥 ∧ 𝑥 𝐹 𝐵 ) ) ) |
| 65 | 64 | exbidv | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ∃ 𝑥 ( 𝑥 = ( ◡ 𝐹 ‘ 𝐵 ) ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ 𝑥 ) ↔ ∃ 𝑥 ( ( ◡ 𝐹 ‘ 𝐴 ) ≤ 𝑥 ∧ 𝑥 𝐹 𝐵 ) ) ) |
| 66 | 54 65 | bitr3id | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ↔ ∃ 𝑥 ( ( ◡ 𝐹 ‘ 𝐴 ) ≤ 𝑥 ∧ 𝑥 𝐹 𝐵 ) ) ) |
| 67 | 51 66 | bitr4d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ◡ 𝐹 ‘ 𝐴 ) ( 𝐹 ∘ ≤ ) 𝐵 ↔ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ) |
| 68 | 48 67 | bitrid | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ∃ 𝑥 ( 𝑥 = ( ◡ 𝐹 ‘ 𝐴 ) ∧ 𝑥 ( 𝐹 ∘ ≤ ) 𝐵 ) ↔ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ) |
| 69 | 31 45 68 | 3bitrd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ) |
| 70 | 69 | pm5.32da | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≤ 𝐵 ) ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ) ) |
| 71 | df-3an | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ) | |
| 72 | 70 71 | bitr4di | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≤ 𝐵 ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ) ) |
| 73 | 29 72 | bitrd | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ) ) |