This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert implication to equivalence within an existence statement using the Separation Scheme (Aussonderung) ax-sep . Inference associated with sepex . (Contributed by NM, 21-Jun-1993) Generalize conclusion, extract closed form, and avoid ax-9 . (Revised by Matthew House, 19-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sepexi.1 | ⊢ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 ∈ 𝑦 ) | |
| Assertion | sepexi | ⊢ ∃ 𝑧 ∀ 𝑥 ( 𝑥 ∈ 𝑧 ↔ 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sepexi.1 | ⊢ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 ∈ 𝑦 ) | |
| 2 | sepex | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 ∈ 𝑦 ) → ∃ 𝑧 ∀ 𝑥 ( 𝑥 ∈ 𝑧 ↔ 𝜑 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ∃ 𝑧 ∀ 𝑥 ( 𝑥 ∈ 𝑧 ↔ 𝜑 ) |