This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Axiom of Choice ax-ac , reproved from conditionless ZFC axioms. (Contributed by NM, 15-Aug-2003) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zfcndac | ⊢ ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axacnd | ⊢ ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ∀ 𝑦 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) | |
| 2 | 19.3v | ⊢ ( ∀ 𝑦 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ↔ ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) | |
| 3 | 2 | imbi1i | ⊢ ( ( ∀ 𝑦 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ↔ ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
| 4 | 3 | 2albii | ⊢ ( ∀ 𝑧 ∀ 𝑤 ( ∀ 𝑦 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ↔ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
| 5 | 4 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ∀ 𝑦 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ↔ ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
| 6 | 1 5 | mpbi | ⊢ ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) |
| 7 | equequ2 | ⊢ ( 𝑣 = 𝑥 → ( 𝑢 = 𝑣 ↔ 𝑢 = 𝑥 ) ) | |
| 8 | 7 | bibi2d | ⊢ ( 𝑣 = 𝑥 → ( ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ↔ ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑥 ) ) ) |
| 9 | elequ2 | ⊢ ( 𝑡 = 𝑥 → ( 𝑤 ∈ 𝑡 ↔ 𝑤 ∈ 𝑥 ) ) | |
| 10 | 9 | anbi2d | ⊢ ( 𝑡 = 𝑥 → ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ↔ ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
| 11 | elequ2 | ⊢ ( 𝑡 = 𝑥 → ( 𝑢 ∈ 𝑡 ↔ 𝑢 ∈ 𝑥 ) ) | |
| 12 | elequ1 | ⊢ ( 𝑡 = 𝑥 → ( 𝑡 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦 ) ) | |
| 13 | 11 12 | anbi12d | ⊢ ( 𝑡 = 𝑥 → ( ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ↔ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ) |
| 14 | 10 13 | anbi12d | ⊢ ( 𝑡 = 𝑥 → ( ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ) ) |
| 15 | 14 | cbvexvw | ⊢ ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ ∃ 𝑥 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ) |
| 16 | 15 | bibi1i | ⊢ ( ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑥 ) ↔ ( ∃ 𝑥 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑥 ) ) |
| 17 | 8 16 | bitrdi | ⊢ ( 𝑣 = 𝑥 → ( ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ↔ ( ∃ 𝑥 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑥 ) ) ) |
| 18 | 17 | albidv | ⊢ ( 𝑣 = 𝑥 → ( ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ↔ ∀ 𝑢 ( ∃ 𝑥 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑥 ) ) ) |
| 19 | elequ1 | ⊢ ( 𝑢 = 𝑧 → ( 𝑢 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤 ) ) | |
| 20 | 19 | anbi1d | ⊢ ( 𝑢 = 𝑧 → ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ↔ ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
| 21 | elequ1 | ⊢ ( 𝑢 = 𝑧 → ( 𝑢 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) | |
| 22 | 21 | anbi1d | ⊢ ( 𝑢 = 𝑧 → ( ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ↔ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ) |
| 23 | 20 22 | anbi12d | ⊢ ( 𝑢 = 𝑧 → ( ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ) ) |
| 24 | 23 | exbidv | ⊢ ( 𝑢 = 𝑧 → ( ∃ 𝑥 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ) ) |
| 25 | equequ1 | ⊢ ( 𝑢 = 𝑧 → ( 𝑢 = 𝑥 ↔ 𝑧 = 𝑥 ) ) | |
| 26 | 24 25 | bibi12d | ⊢ ( 𝑢 = 𝑧 → ( ( ∃ 𝑥 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑥 ) ↔ ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
| 27 | 26 | cbvalvw | ⊢ ( ∀ 𝑢 ( ∃ 𝑥 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑥 ) ↔ ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) |
| 28 | 18 27 | bitrdi | ⊢ ( 𝑣 = 𝑥 → ( ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ↔ ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
| 29 | 28 | cbvexvw | ⊢ ( ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ↔ ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) |
| 30 | 29 | imbi2i | ⊢ ( ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ) ↔ ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
| 31 | 30 | 2albii | ⊢ ( ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ) ↔ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
| 32 | 31 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ) ↔ ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
| 33 | 6 32 | mpbir | ⊢ ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ) |