This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: nn0gcdsq extended to integers by symmetry. (Contributed by Stefan O'Rear, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zgcdsq | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdabs | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( abs ‘ 𝐴 ) gcd ( abs ‘ 𝐵 ) ) = ( 𝐴 gcd 𝐵 ) ) | |
| 2 | 1 | eqcomd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) = ( ( abs ‘ 𝐴 ) gcd ( abs ‘ 𝐵 ) ) ) |
| 3 | 2 | oveq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) = ( ( ( abs ‘ 𝐴 ) gcd ( abs ‘ 𝐵 ) ) ↑ 2 ) ) |
| 4 | nn0abscl | ⊢ ( 𝐴 ∈ ℤ → ( abs ‘ 𝐴 ) ∈ ℕ0 ) | |
| 5 | nn0abscl | ⊢ ( 𝐵 ∈ ℤ → ( abs ‘ 𝐵 ) ∈ ℕ0 ) | |
| 6 | nn0gcdsq | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℕ0 ∧ ( abs ‘ 𝐵 ) ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) gcd ( abs ‘ 𝐵 ) ) ↑ 2 ) = ( ( ( abs ‘ 𝐴 ) ↑ 2 ) gcd ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( abs ‘ 𝐴 ) gcd ( abs ‘ 𝐵 ) ) ↑ 2 ) = ( ( ( abs ‘ 𝐴 ) ↑ 2 ) gcd ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ) |
| 8 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℝ ) |
| 10 | absresq | ⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ↑ 2 ) ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
| 12 | zre | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℝ ) |
| 14 | absresq | ⊢ ( 𝐵 ∈ ℝ → ( ( abs ‘ 𝐵 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( abs ‘ 𝐵 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ) |
| 16 | 11 15 | oveq12d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) gcd ( ( abs ‘ 𝐵 ) ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) ) |
| 17 | 3 7 16 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) ) |