This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An object A is called a zero object provided that it is both an initial object and a terminal object. Definition 7.7 of Adamek p. 103. (Contributed by AV, 3-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-zeroo | ⊢ ZeroO = ( 𝑐 ∈ Cat ↦ ( ( InitO ‘ 𝑐 ) ∩ ( TermO ‘ 𝑐 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | czeroo | ⊢ ZeroO | |
| 1 | vc | ⊢ 𝑐 | |
| 2 | ccat | ⊢ Cat | |
| 3 | cinito | ⊢ InitO | |
| 4 | 1 | cv | ⊢ 𝑐 |
| 5 | 4 3 | cfv | ⊢ ( InitO ‘ 𝑐 ) |
| 6 | ctermo | ⊢ TermO | |
| 7 | 4 6 | cfv | ⊢ ( TermO ‘ 𝑐 ) |
| 8 | 5 7 | cin | ⊢ ( ( InitO ‘ 𝑐 ) ∩ ( TermO ‘ 𝑐 ) ) |
| 9 | 1 2 8 | cmpt | ⊢ ( 𝑐 ∈ Cat ↦ ( ( InitO ‘ 𝑐 ) ∩ ( TermO ‘ 𝑐 ) ) ) |
| 10 | 0 9 | wceq | ⊢ ZeroO = ( 𝑐 ∈ Cat ↦ ( ( InitO ‘ 𝑐 ) ∩ ( TermO ‘ 𝑐 ) ) ) |