This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a unital ring a left invertible element is not a zero divisor. See also ringinvnzdiv . (Contributed by Jeff Madsen, 18-Apr-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zerdivempx.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| zerdivempx.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | ||
| zerdivempx.3 | ⊢ 𝑍 = ( GId ‘ 𝐺 ) | ||
| zerdivempx.4 | ⊢ 𝑋 = ran 𝐺 | ||
| zerdivempx.5 | ⊢ 𝑈 = ( GId ‘ 𝐻 ) | ||
| Assertion | zerdivemp1x | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ ∃ 𝑎 ∈ 𝑋 ( 𝑎 𝐻 𝐴 ) = 𝑈 ) → ( 𝐵 ∈ 𝑋 → ( ( 𝐴 𝐻 𝐵 ) = 𝑍 → 𝐵 = 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zerdivempx.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| 2 | zerdivempx.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | |
| 3 | zerdivempx.3 | ⊢ 𝑍 = ( GId ‘ 𝐺 ) | |
| 4 | zerdivempx.4 | ⊢ 𝑋 = ran 𝐺 | |
| 5 | zerdivempx.5 | ⊢ 𝑈 = ( GId ‘ 𝐻 ) | |
| 6 | oveq2 | ⊢ ( ( 𝐴 𝐻 𝐵 ) = 𝑍 → ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) ) | |
| 7 | simpl1 | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) ) → 𝑅 ∈ RingOps ) | |
| 8 | simpr1 | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) ) → 𝑎 ∈ 𝑋 ) | |
| 9 | simpr3 | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 10 | simpl3 | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) | |
| 11 | 1 2 4 | rngoass | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝑎 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) ) |
| 12 | 7 8 9 10 11 | syl13anc | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) ) |
| 13 | eqtr | ⊢ ( ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) ∧ ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) ) → ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) ) | |
| 14 | 13 | ex | ⊢ ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) → ( ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) → ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) ) ) |
| 15 | eqtr | ⊢ ( ( ( 𝑈 𝐻 𝐵 ) = ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) ∧ ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) ) → ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) ) | |
| 16 | 3 4 1 2 | rngorz | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑎 ∈ 𝑋 ) → ( 𝑎 𝐻 𝑍 ) = 𝑍 ) |
| 17 | 16 | 3adant3 | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑎 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑎 𝐻 𝑍 ) = 𝑍 ) |
| 18 | 1 | rneqi | ⊢ ran 𝐺 = ran ( 1st ‘ 𝑅 ) |
| 19 | 4 18 | eqtri | ⊢ 𝑋 = ran ( 1st ‘ 𝑅 ) |
| 20 | 2 19 5 | rngolidm | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐵 ∈ 𝑋 ) → ( 𝑈 𝐻 𝐵 ) = 𝐵 ) |
| 21 | 20 | 3adant2 | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑎 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑈 𝐻 𝐵 ) = 𝐵 ) |
| 22 | simp1 | ⊢ ( ( ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) ∧ ( 𝑈 𝐻 𝐵 ) = 𝐵 ∧ ( 𝑎 𝐻 𝑍 ) = 𝑍 ) → ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) ) | |
| 23 | simp2 | ⊢ ( ( ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) ∧ ( 𝑈 𝐻 𝐵 ) = 𝐵 ∧ ( 𝑎 𝐻 𝑍 ) = 𝑍 ) → ( 𝑈 𝐻 𝐵 ) = 𝐵 ) | |
| 24 | simp3 | ⊢ ( ( ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) ∧ ( 𝑈 𝐻 𝐵 ) = 𝐵 ∧ ( 𝑎 𝐻 𝑍 ) = 𝑍 ) → ( 𝑎 𝐻 𝑍 ) = 𝑍 ) | |
| 25 | 22 23 24 | 3eqtr3d | ⊢ ( ( ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) ∧ ( 𝑈 𝐻 𝐵 ) = 𝐵 ∧ ( 𝑎 𝐻 𝑍 ) = 𝑍 ) → 𝐵 = 𝑍 ) |
| 26 | 25 | a1d | ⊢ ( ( ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) ∧ ( 𝑈 𝐻 𝐵 ) = 𝐵 ∧ ( 𝑎 𝐻 𝑍 ) = 𝑍 ) → ( 𝐴 ∈ 𝑋 → 𝐵 = 𝑍 ) ) |
| 27 | 26 | 3exp | ⊢ ( ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → ( ( 𝑈 𝐻 𝐵 ) = 𝐵 → ( ( 𝑎 𝐻 𝑍 ) = 𝑍 → ( 𝐴 ∈ 𝑋 → 𝐵 = 𝑍 ) ) ) ) |
| 28 | 27 | com14 | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑈 𝐻 𝐵 ) = 𝐵 → ( ( 𝑎 𝐻 𝑍 ) = 𝑍 → ( ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → 𝐵 = 𝑍 ) ) ) ) |
| 29 | 28 | com13 | ⊢ ( ( 𝑎 𝐻 𝑍 ) = 𝑍 → ( ( 𝑈 𝐻 𝐵 ) = 𝐵 → ( 𝐴 ∈ 𝑋 → ( ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → 𝐵 = 𝑍 ) ) ) ) |
| 30 | 17 21 29 | sylc | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑎 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑋 → ( ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → 𝐵 = 𝑍 ) ) ) |
| 31 | 30 | 3exp | ⊢ ( 𝑅 ∈ RingOps → ( 𝑎 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( 𝐴 ∈ 𝑋 → ( ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → 𝐵 = 𝑍 ) ) ) ) ) |
| 32 | 31 | com15 | ⊢ ( ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → ( 𝑎 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( 𝐴 ∈ 𝑋 → ( 𝑅 ∈ RingOps → 𝐵 = 𝑍 ) ) ) ) ) |
| 33 | 32 | com24 | ⊢ ( ( 𝑈 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( 𝑎 ∈ 𝑋 → ( 𝑅 ∈ RingOps → 𝐵 = 𝑍 ) ) ) ) ) |
| 34 | 15 33 | syl | ⊢ ( ( ( 𝑈 𝐻 𝐵 ) = ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) ∧ ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) ) → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( 𝑎 ∈ 𝑋 → ( 𝑅 ∈ RingOps → 𝐵 = 𝑍 ) ) ) ) ) |
| 35 | 34 | ex | ⊢ ( ( 𝑈 𝐻 𝐵 ) = ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) → ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( 𝑎 ∈ 𝑋 → ( 𝑅 ∈ RingOps → 𝐵 = 𝑍 ) ) ) ) ) ) |
| 36 | 35 | eqcoms | ⊢ ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑈 𝐻 𝐵 ) → ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( 𝑎 ∈ 𝑋 → ( 𝑅 ∈ RingOps → 𝐵 = 𝑍 ) ) ) ) ) ) |
| 37 | 36 | com25 | ⊢ ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑈 𝐻 𝐵 ) → ( 𝑎 ∈ 𝑋 → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → ( 𝑅 ∈ RingOps → 𝐵 = 𝑍 ) ) ) ) ) ) |
| 38 | oveq1 | ⊢ ( ( 𝑎 𝐻 𝐴 ) = 𝑈 → ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑈 𝐻 𝐵 ) ) | |
| 39 | 37 38 | syl11 | ⊢ ( 𝑎 ∈ 𝑋 → ( ( 𝑎 𝐻 𝐴 ) = 𝑈 → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → ( 𝑅 ∈ RingOps → 𝐵 = 𝑍 ) ) ) ) ) ) |
| 40 | 39 | 3imp | ⊢ ( ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 ∈ 𝑋 → ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → ( 𝑅 ∈ RingOps → 𝐵 = 𝑍 ) ) ) ) |
| 41 | 40 | com13 | ⊢ ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 𝑍 ) → ( 𝐵 ∈ 𝑋 → ( ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑅 ∈ RingOps → 𝐵 = 𝑍 ) ) ) ) |
| 42 | 14 41 | syl6 | ⊢ ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) → ( ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) → ( 𝐵 ∈ 𝑋 → ( ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑅 ∈ RingOps → 𝐵 = 𝑍 ) ) ) ) ) |
| 43 | 42 | com15 | ⊢ ( 𝑅 ∈ RingOps → ( ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) → ( 𝐵 ∈ 𝑋 → ( ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) → 𝐵 = 𝑍 ) ) ) ) ) |
| 44 | 43 | 3imp1 | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( ( 𝑎 𝐻 𝐴 ) 𝐻 𝐵 ) = ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) → 𝐵 = 𝑍 ) ) |
| 45 | 12 44 | mpd | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) ) → 𝐵 = 𝑍 ) |
| 46 | 45 | 3exp1 | ⊢ ( 𝑅 ∈ RingOps → ( ( 𝑎 𝐻 ( 𝐴 𝐻 𝐵 ) ) = ( 𝑎 𝐻 𝑍 ) → ( 𝐵 ∈ 𝑋 → ( ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) → 𝐵 = 𝑍 ) ) ) ) |
| 47 | 6 46 | syl5com | ⊢ ( ( 𝐴 𝐻 𝐵 ) = 𝑍 → ( 𝑅 ∈ RingOps → ( 𝐵 ∈ 𝑋 → ( ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) → 𝐵 = 𝑍 ) ) ) ) |
| 48 | 47 | com14 | ⊢ ( ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 𝐻 𝐴 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑅 ∈ RingOps → ( 𝐵 ∈ 𝑋 → ( ( 𝐴 𝐻 𝐵 ) = 𝑍 → 𝐵 = 𝑍 ) ) ) ) |
| 49 | 48 | 3exp | ⊢ ( 𝑎 ∈ 𝑋 → ( ( 𝑎 𝐻 𝐴 ) = 𝑈 → ( 𝐴 ∈ 𝑋 → ( 𝑅 ∈ RingOps → ( 𝐵 ∈ 𝑋 → ( ( 𝐴 𝐻 𝐵 ) = 𝑍 → 𝐵 = 𝑍 ) ) ) ) ) ) |
| 50 | 49 | rexlimiv | ⊢ ( ∃ 𝑎 ∈ 𝑋 ( 𝑎 𝐻 𝐴 ) = 𝑈 → ( 𝐴 ∈ 𝑋 → ( 𝑅 ∈ RingOps → ( 𝐵 ∈ 𝑋 → ( ( 𝐴 𝐻 𝐵 ) = 𝑍 → 𝐵 = 𝑍 ) ) ) ) ) |
| 51 | 50 | com13 | ⊢ ( 𝑅 ∈ RingOps → ( 𝐴 ∈ 𝑋 → ( ∃ 𝑎 ∈ 𝑋 ( 𝑎 𝐻 𝐴 ) = 𝑈 → ( 𝐵 ∈ 𝑋 → ( ( 𝐴 𝐻 𝐵 ) = 𝑍 → 𝐵 = 𝑍 ) ) ) ) ) |
| 52 | 51 | 3imp | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ ∃ 𝑎 ∈ 𝑋 ( 𝑎 𝐻 𝐴 ) = 𝑈 ) → ( 𝐵 ∈ 𝑋 → ( ( 𝐴 𝐻 𝐵 ) = 𝑍 → 𝐵 = 𝑍 ) ) ) |