This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a unital ring, a left invertible element is not a zero divisor. (Contributed by FL, 18-Apr-2010) (Revised by Jeff Madsen, 18-Apr-2010) (Revised by AV, 24-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringinvnzdiv.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ringinvnzdiv.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| ringinvnzdiv.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| ringinvnzdiv.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| ringinvnzdiv.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| ringinvnzdiv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ringinvnzdiv.a | ⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝐵 ( 𝑎 · 𝑋 ) = 1 ) | ||
| ringinvnzdiv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | ringinvnzdiv | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 ↔ 𝑌 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringinvnzdiv.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ringinvnzdiv.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | ringinvnzdiv.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | ringinvnzdiv.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | ringinvnzdiv.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 6 | ringinvnzdiv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | ringinvnzdiv.a | ⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝐵 ( 𝑎 · 𝑋 ) = 1 ) | |
| 8 | ringinvnzdiv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | 1 2 3 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ) → ( 1 · 𝑌 ) = 𝑌 ) |
| 10 | 5 8 9 | syl2anc | ⊢ ( 𝜑 → ( 1 · 𝑌 ) = 𝑌 ) |
| 11 | 10 | eqcomd | ⊢ ( 𝜑 → 𝑌 = ( 1 · 𝑌 ) ) |
| 12 | 11 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) ∧ ( 𝑋 · 𝑌 ) = 0 ) → 𝑌 = ( 1 · 𝑌 ) ) |
| 13 | oveq1 | ⊢ ( 1 = ( 𝑎 · 𝑋 ) → ( 1 · 𝑌 ) = ( ( 𝑎 · 𝑋 ) · 𝑌 ) ) | |
| 14 | 13 | eqcoms | ⊢ ( ( 𝑎 · 𝑋 ) = 1 → ( 1 · 𝑌 ) = ( ( 𝑎 · 𝑋 ) · 𝑌 ) ) |
| 15 | 14 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) → ( 1 · 𝑌 ) = ( ( 𝑎 · 𝑋 ) · 𝑌 ) ) |
| 16 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 17 | simpr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑎 ∈ 𝐵 ) | |
| 18 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 19 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
| 20 | 17 18 19 | 3jca | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
| 21 | 16 20 | jca | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑅 ∈ Ring ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ) |
| 22 | 21 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) → ( 𝑅 ∈ Ring ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ) |
| 23 | 1 2 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑎 · 𝑋 ) · 𝑌 ) = ( 𝑎 · ( 𝑋 · 𝑌 ) ) ) |
| 24 | 22 23 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) → ( ( 𝑎 · 𝑋 ) · 𝑌 ) = ( 𝑎 · ( 𝑋 · 𝑌 ) ) ) |
| 25 | 15 24 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) → ( 1 · 𝑌 ) = ( 𝑎 · ( 𝑋 · 𝑌 ) ) ) |
| 26 | 25 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) ∧ ( 𝑋 · 𝑌 ) = 0 ) → ( 1 · 𝑌 ) = ( 𝑎 · ( 𝑋 · 𝑌 ) ) ) |
| 27 | oveq2 | ⊢ ( ( 𝑋 · 𝑌 ) = 0 → ( 𝑎 · ( 𝑋 · 𝑌 ) ) = ( 𝑎 · 0 ) ) | |
| 28 | 1 2 4 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 · 0 ) = 0 ) |
| 29 | 5 28 | sylan | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 · 0 ) = 0 ) |
| 30 | 29 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) → ( 𝑎 · 0 ) = 0 ) |
| 31 | 27 30 | sylan9eqr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) ∧ ( 𝑋 · 𝑌 ) = 0 ) → ( 𝑎 · ( 𝑋 · 𝑌 ) ) = 0 ) |
| 32 | 12 26 31 | 3eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) ∧ ( 𝑋 · 𝑌 ) = 0 ) → 𝑌 = 0 ) |
| 33 | 32 | exp31 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑎 · 𝑋 ) = 1 → ( ( 𝑋 · 𝑌 ) = 0 → 𝑌 = 0 ) ) ) |
| 34 | 33 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝐵 ( 𝑎 · 𝑋 ) = 1 → ( ( 𝑋 · 𝑌 ) = 0 → 𝑌 = 0 ) ) ) |
| 35 | 7 34 | mpd | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 → 𝑌 = 0 ) ) |
| 36 | oveq2 | ⊢ ( 𝑌 = 0 → ( 𝑋 · 𝑌 ) = ( 𝑋 · 0 ) ) | |
| 37 | 1 2 4 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · 0 ) = 0 ) |
| 38 | 5 6 37 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 · 0 ) = 0 ) |
| 39 | 36 38 | sylan9eqr | ⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ( 𝑋 · 𝑌 ) = 0 ) |
| 40 | 39 | ex | ⊢ ( 𝜑 → ( 𝑌 = 0 → ( 𝑋 · 𝑌 ) = 0 ) ) |
| 41 | 35 40 | impbid | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 ↔ 𝑌 = 0 ) ) |