This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a unital ring a left invertible element is not a zero divisor. See also ringinvnzdiv . (Contributed by Jeff Madsen, 18-Apr-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zerdivempx.1 | |- G = ( 1st ` R ) |
|
| zerdivempx.2 | |- H = ( 2nd ` R ) |
||
| zerdivempx.3 | |- Z = ( GId ` G ) |
||
| zerdivempx.4 | |- X = ran G |
||
| zerdivempx.5 | |- U = ( GId ` H ) |
||
| Assertion | zerdivemp1x | |- ( ( R e. RingOps /\ A e. X /\ E. a e. X ( a H A ) = U ) -> ( B e. X -> ( ( A H B ) = Z -> B = Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zerdivempx.1 | |- G = ( 1st ` R ) |
|
| 2 | zerdivempx.2 | |- H = ( 2nd ` R ) |
|
| 3 | zerdivempx.3 | |- Z = ( GId ` G ) |
|
| 4 | zerdivempx.4 | |- X = ran G |
|
| 5 | zerdivempx.5 | |- U = ( GId ` H ) |
|
| 6 | oveq2 | |- ( ( A H B ) = Z -> ( a H ( A H B ) ) = ( a H Z ) ) |
|
| 7 | simpl1 | |- ( ( ( R e. RingOps /\ ( a H ( A H B ) ) = ( a H Z ) /\ B e. X ) /\ ( a e. X /\ ( a H A ) = U /\ A e. X ) ) -> R e. RingOps ) |
|
| 8 | simpr1 | |- ( ( ( R e. RingOps /\ ( a H ( A H B ) ) = ( a H Z ) /\ B e. X ) /\ ( a e. X /\ ( a H A ) = U /\ A e. X ) ) -> a e. X ) |
|
| 9 | simpr3 | |- ( ( ( R e. RingOps /\ ( a H ( A H B ) ) = ( a H Z ) /\ B e. X ) /\ ( a e. X /\ ( a H A ) = U /\ A e. X ) ) -> A e. X ) |
|
| 10 | simpl3 | |- ( ( ( R e. RingOps /\ ( a H ( A H B ) ) = ( a H Z ) /\ B e. X ) /\ ( a e. X /\ ( a H A ) = U /\ A e. X ) ) -> B e. X ) |
|
| 11 | 1 2 4 | rngoass | |- ( ( R e. RingOps /\ ( a e. X /\ A e. X /\ B e. X ) ) -> ( ( a H A ) H B ) = ( a H ( A H B ) ) ) |
| 12 | 7 8 9 10 11 | syl13anc | |- ( ( ( R e. RingOps /\ ( a H ( A H B ) ) = ( a H Z ) /\ B e. X ) /\ ( a e. X /\ ( a H A ) = U /\ A e. X ) ) -> ( ( a H A ) H B ) = ( a H ( A H B ) ) ) |
| 13 | eqtr | |- ( ( ( ( a H A ) H B ) = ( a H ( A H B ) ) /\ ( a H ( A H B ) ) = ( a H Z ) ) -> ( ( a H A ) H B ) = ( a H Z ) ) |
|
| 14 | 13 | ex | |- ( ( ( a H A ) H B ) = ( a H ( A H B ) ) -> ( ( a H ( A H B ) ) = ( a H Z ) -> ( ( a H A ) H B ) = ( a H Z ) ) ) |
| 15 | eqtr | |- ( ( ( U H B ) = ( ( a H A ) H B ) /\ ( ( a H A ) H B ) = ( a H Z ) ) -> ( U H B ) = ( a H Z ) ) |
|
| 16 | 3 4 1 2 | rngorz | |- ( ( R e. RingOps /\ a e. X ) -> ( a H Z ) = Z ) |
| 17 | 16 | 3adant3 | |- ( ( R e. RingOps /\ a e. X /\ B e. X ) -> ( a H Z ) = Z ) |
| 18 | 1 | rneqi | |- ran G = ran ( 1st ` R ) |
| 19 | 4 18 | eqtri | |- X = ran ( 1st ` R ) |
| 20 | 2 19 5 | rngolidm | |- ( ( R e. RingOps /\ B e. X ) -> ( U H B ) = B ) |
| 21 | 20 | 3adant2 | |- ( ( R e. RingOps /\ a e. X /\ B e. X ) -> ( U H B ) = B ) |
| 22 | simp1 | |- ( ( ( U H B ) = ( a H Z ) /\ ( U H B ) = B /\ ( a H Z ) = Z ) -> ( U H B ) = ( a H Z ) ) |
|
| 23 | simp2 | |- ( ( ( U H B ) = ( a H Z ) /\ ( U H B ) = B /\ ( a H Z ) = Z ) -> ( U H B ) = B ) |
|
| 24 | simp3 | |- ( ( ( U H B ) = ( a H Z ) /\ ( U H B ) = B /\ ( a H Z ) = Z ) -> ( a H Z ) = Z ) |
|
| 25 | 22 23 24 | 3eqtr3d | |- ( ( ( U H B ) = ( a H Z ) /\ ( U H B ) = B /\ ( a H Z ) = Z ) -> B = Z ) |
| 26 | 25 | a1d | |- ( ( ( U H B ) = ( a H Z ) /\ ( U H B ) = B /\ ( a H Z ) = Z ) -> ( A e. X -> B = Z ) ) |
| 27 | 26 | 3exp | |- ( ( U H B ) = ( a H Z ) -> ( ( U H B ) = B -> ( ( a H Z ) = Z -> ( A e. X -> B = Z ) ) ) ) |
| 28 | 27 | com14 | |- ( A e. X -> ( ( U H B ) = B -> ( ( a H Z ) = Z -> ( ( U H B ) = ( a H Z ) -> B = Z ) ) ) ) |
| 29 | 28 | com13 | |- ( ( a H Z ) = Z -> ( ( U H B ) = B -> ( A e. X -> ( ( U H B ) = ( a H Z ) -> B = Z ) ) ) ) |
| 30 | 17 21 29 | sylc | |- ( ( R e. RingOps /\ a e. X /\ B e. X ) -> ( A e. X -> ( ( U H B ) = ( a H Z ) -> B = Z ) ) ) |
| 31 | 30 | 3exp | |- ( R e. RingOps -> ( a e. X -> ( B e. X -> ( A e. X -> ( ( U H B ) = ( a H Z ) -> B = Z ) ) ) ) ) |
| 32 | 31 | com15 | |- ( ( U H B ) = ( a H Z ) -> ( a e. X -> ( B e. X -> ( A e. X -> ( R e. RingOps -> B = Z ) ) ) ) ) |
| 33 | 32 | com24 | |- ( ( U H B ) = ( a H Z ) -> ( A e. X -> ( B e. X -> ( a e. X -> ( R e. RingOps -> B = Z ) ) ) ) ) |
| 34 | 15 33 | syl | |- ( ( ( U H B ) = ( ( a H A ) H B ) /\ ( ( a H A ) H B ) = ( a H Z ) ) -> ( A e. X -> ( B e. X -> ( a e. X -> ( R e. RingOps -> B = Z ) ) ) ) ) |
| 35 | 34 | ex | |- ( ( U H B ) = ( ( a H A ) H B ) -> ( ( ( a H A ) H B ) = ( a H Z ) -> ( A e. X -> ( B e. X -> ( a e. X -> ( R e. RingOps -> B = Z ) ) ) ) ) ) |
| 36 | 35 | eqcoms | |- ( ( ( a H A ) H B ) = ( U H B ) -> ( ( ( a H A ) H B ) = ( a H Z ) -> ( A e. X -> ( B e. X -> ( a e. X -> ( R e. RingOps -> B = Z ) ) ) ) ) ) |
| 37 | 36 | com25 | |- ( ( ( a H A ) H B ) = ( U H B ) -> ( a e. X -> ( A e. X -> ( B e. X -> ( ( ( a H A ) H B ) = ( a H Z ) -> ( R e. RingOps -> B = Z ) ) ) ) ) ) |
| 38 | oveq1 | |- ( ( a H A ) = U -> ( ( a H A ) H B ) = ( U H B ) ) |
|
| 39 | 37 38 | syl11 | |- ( a e. X -> ( ( a H A ) = U -> ( A e. X -> ( B e. X -> ( ( ( a H A ) H B ) = ( a H Z ) -> ( R e. RingOps -> B = Z ) ) ) ) ) ) |
| 40 | 39 | 3imp | |- ( ( a e. X /\ ( a H A ) = U /\ A e. X ) -> ( B e. X -> ( ( ( a H A ) H B ) = ( a H Z ) -> ( R e. RingOps -> B = Z ) ) ) ) |
| 41 | 40 | com13 | |- ( ( ( a H A ) H B ) = ( a H Z ) -> ( B e. X -> ( ( a e. X /\ ( a H A ) = U /\ A e. X ) -> ( R e. RingOps -> B = Z ) ) ) ) |
| 42 | 14 41 | syl6 | |- ( ( ( a H A ) H B ) = ( a H ( A H B ) ) -> ( ( a H ( A H B ) ) = ( a H Z ) -> ( B e. X -> ( ( a e. X /\ ( a H A ) = U /\ A e. X ) -> ( R e. RingOps -> B = Z ) ) ) ) ) |
| 43 | 42 | com15 | |- ( R e. RingOps -> ( ( a H ( A H B ) ) = ( a H Z ) -> ( B e. X -> ( ( a e. X /\ ( a H A ) = U /\ A e. X ) -> ( ( ( a H A ) H B ) = ( a H ( A H B ) ) -> B = Z ) ) ) ) ) |
| 44 | 43 | 3imp1 | |- ( ( ( R e. RingOps /\ ( a H ( A H B ) ) = ( a H Z ) /\ B e. X ) /\ ( a e. X /\ ( a H A ) = U /\ A e. X ) ) -> ( ( ( a H A ) H B ) = ( a H ( A H B ) ) -> B = Z ) ) |
| 45 | 12 44 | mpd | |- ( ( ( R e. RingOps /\ ( a H ( A H B ) ) = ( a H Z ) /\ B e. X ) /\ ( a e. X /\ ( a H A ) = U /\ A e. X ) ) -> B = Z ) |
| 46 | 45 | 3exp1 | |- ( R e. RingOps -> ( ( a H ( A H B ) ) = ( a H Z ) -> ( B e. X -> ( ( a e. X /\ ( a H A ) = U /\ A e. X ) -> B = Z ) ) ) ) |
| 47 | 6 46 | syl5com | |- ( ( A H B ) = Z -> ( R e. RingOps -> ( B e. X -> ( ( a e. X /\ ( a H A ) = U /\ A e. X ) -> B = Z ) ) ) ) |
| 48 | 47 | com14 | |- ( ( a e. X /\ ( a H A ) = U /\ A e. X ) -> ( R e. RingOps -> ( B e. X -> ( ( A H B ) = Z -> B = Z ) ) ) ) |
| 49 | 48 | 3exp | |- ( a e. X -> ( ( a H A ) = U -> ( A e. X -> ( R e. RingOps -> ( B e. X -> ( ( A H B ) = Z -> B = Z ) ) ) ) ) ) |
| 50 | 49 | rexlimiv | |- ( E. a e. X ( a H A ) = U -> ( A e. X -> ( R e. RingOps -> ( B e. X -> ( ( A H B ) = Z -> B = Z ) ) ) ) ) |
| 51 | 50 | com13 | |- ( R e. RingOps -> ( A e. X -> ( E. a e. X ( a H A ) = U -> ( B e. X -> ( ( A H B ) = Z -> B = Z ) ) ) ) ) |
| 52 | 51 | 3imp | |- ( ( R e. RingOps /\ A e. X /\ E. a e. X ( a H A ) = U ) -> ( B e. X -> ( ( A H B ) = Z -> B = Z ) ) ) |