This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zextle | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ) → 𝑀 = 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 2 | 1 | leidd | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ≤ 𝑀 ) |
| 3 | 2 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ) → 𝑀 ≤ 𝑀 ) |
| 4 | breq1 | ⊢ ( 𝑘 = 𝑀 → ( 𝑘 ≤ 𝑀 ↔ 𝑀 ≤ 𝑀 ) ) | |
| 5 | breq1 | ⊢ ( 𝑘 = 𝑀 → ( 𝑘 ≤ 𝑁 ↔ 𝑀 ≤ 𝑁 ) ) | |
| 6 | 4 5 | bibi12d | ⊢ ( 𝑘 = 𝑀 → ( ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ↔ ( 𝑀 ≤ 𝑀 ↔ 𝑀 ≤ 𝑁 ) ) ) |
| 7 | 6 | rspcva | ⊢ ( ( 𝑀 ∈ ℤ ∧ ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ) → ( 𝑀 ≤ 𝑀 ↔ 𝑀 ≤ 𝑁 ) ) |
| 8 | 3 7 | mpbid | ⊢ ( ( 𝑀 ∈ ℤ ∧ ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ) → 𝑀 ≤ 𝑁 ) |
| 9 | 8 | adantlr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ) → 𝑀 ≤ 𝑁 ) |
| 10 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 11 | 10 | leidd | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ≤ 𝑁 ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑁 ∈ ℤ ∧ ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ) → 𝑁 ≤ 𝑁 ) |
| 13 | breq1 | ⊢ ( 𝑘 = 𝑁 → ( 𝑘 ≤ 𝑀 ↔ 𝑁 ≤ 𝑀 ) ) | |
| 14 | breq1 | ⊢ ( 𝑘 = 𝑁 → ( 𝑘 ≤ 𝑁 ↔ 𝑁 ≤ 𝑁 ) ) | |
| 15 | 13 14 | bibi12d | ⊢ ( 𝑘 = 𝑁 → ( ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ↔ ( 𝑁 ≤ 𝑀 ↔ 𝑁 ≤ 𝑁 ) ) ) |
| 16 | 15 | rspcva | ⊢ ( ( 𝑁 ∈ ℤ ∧ ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ) → ( 𝑁 ≤ 𝑀 ↔ 𝑁 ≤ 𝑁 ) ) |
| 17 | 12 16 | mpbird | ⊢ ( ( 𝑁 ∈ ℤ ∧ ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ) → 𝑁 ≤ 𝑀 ) |
| 18 | 17 | adantll | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ) → 𝑁 ≤ 𝑀 ) |
| 19 | 9 18 | jca | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ) → ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) |
| 20 | 19 | ex | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) → ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) ) |
| 21 | letri3 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 = 𝑁 ↔ ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) ) | |
| 22 | 1 10 21 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 = 𝑁 ↔ ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) ) |
| 23 | 20 22 | sylibrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) → 𝑀 = 𝑁 ) ) |
| 24 | 23 | 3impia | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀ 𝑘 ∈ ℤ ( 𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁 ) ) → 𝑀 = 𝑁 ) |