This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of divisibility: if D divides A then it divides B x. A . (Contributed by NM, 3-Oct-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zdivmul | |- ( ( ( D e. NN /\ A e. ZZ /\ B e. ZZ ) /\ ( A / D ) e. ZZ ) -> ( ( B x. A ) / D ) e. ZZ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | |- ( B e. ZZ -> B e. CC ) |
|
| 2 | 1 | 3ad2ant2 | |- ( ( A e. ZZ /\ B e. ZZ /\ D e. NN ) -> B e. CC ) |
| 3 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 4 | 3 | 3ad2ant1 | |- ( ( A e. ZZ /\ B e. ZZ /\ D e. NN ) -> A e. CC ) |
| 5 | nncn | |- ( D e. NN -> D e. CC ) |
|
| 6 | nnne0 | |- ( D e. NN -> D =/= 0 ) |
|
| 7 | 5 6 | jca | |- ( D e. NN -> ( D e. CC /\ D =/= 0 ) ) |
| 8 | 7 | 3ad2ant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ D e. NN ) -> ( D e. CC /\ D =/= 0 ) ) |
| 9 | divass | |- ( ( B e. CC /\ A e. CC /\ ( D e. CC /\ D =/= 0 ) ) -> ( ( B x. A ) / D ) = ( B x. ( A / D ) ) ) |
|
| 10 | 2 4 8 9 | syl3anc | |- ( ( A e. ZZ /\ B e. ZZ /\ D e. NN ) -> ( ( B x. A ) / D ) = ( B x. ( A / D ) ) ) |
| 11 | 10 | 3comr | |- ( ( D e. NN /\ A e. ZZ /\ B e. ZZ ) -> ( ( B x. A ) / D ) = ( B x. ( A / D ) ) ) |
| 12 | 11 | adantr | |- ( ( ( D e. NN /\ A e. ZZ /\ B e. ZZ ) /\ ( A / D ) e. ZZ ) -> ( ( B x. A ) / D ) = ( B x. ( A / D ) ) ) |
| 13 | zmulcl | |- ( ( B e. ZZ /\ ( A / D ) e. ZZ ) -> ( B x. ( A / D ) ) e. ZZ ) |
|
| 14 | 13 | 3ad2antl3 | |- ( ( ( D e. NN /\ A e. ZZ /\ B e. ZZ ) /\ ( A / D ) e. ZZ ) -> ( B x. ( A / D ) ) e. ZZ ) |
| 15 | 12 14 | eqeltrd | |- ( ( ( D e. NN /\ A e. ZZ /\ B e. ZZ ) /\ ( A / D ) e. ZZ ) -> ( ( B x. A ) / D ) e. ZZ ) |