This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real subtraction when both arguments are real. (Contributed by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexsub | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 +𝑒 -𝑒 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexneg | ⊢ ( 𝐵 ∈ ℝ → -𝑒 𝐵 = - 𝐵 ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → -𝑒 𝐵 = - 𝐵 ) |
| 3 | 2 | oveq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 +𝑒 -𝑒 𝐵 ) = ( 𝐴 +𝑒 - 𝐵 ) ) |
| 4 | renegcl | ⊢ ( 𝐵 ∈ ℝ → - 𝐵 ∈ ℝ ) | |
| 5 | rexadd | ⊢ ( ( 𝐴 ∈ ℝ ∧ - 𝐵 ∈ ℝ ) → ( 𝐴 +𝑒 - 𝐵 ) = ( 𝐴 + - 𝐵 ) ) | |
| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 +𝑒 - 𝐵 ) = ( 𝐴 + - 𝐵 ) ) |
| 7 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 8 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 9 | negsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) | |
| 10 | 7 8 9 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 11 | 3 6 10 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 +𝑒 -𝑒 𝐵 ) = ( 𝐴 − 𝐵 ) ) |