This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Not equal and not larger implies smaller. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xrlttri5d.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| xrlttri5d.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | ||
| xrlttri5d.aneb | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | ||
| xrlttri5d.nlt | ⊢ ( 𝜑 → ¬ 𝐵 < 𝐴 ) | ||
| Assertion | xrlttri5d | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlttri5d.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| 2 | xrlttri5d.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | |
| 3 | xrlttri5d.aneb | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | |
| 4 | xrlttri5d.nlt | ⊢ ( 𝜑 → ¬ 𝐵 < 𝐴 ) | |
| 5 | 3 | neneqd | ⊢ ( 𝜑 → ¬ 𝐴 = 𝐵 ) |
| 6 | xrlttri3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 = 𝐵 ↔ ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ) ) | |
| 7 | 1 2 6 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 = 𝐵 ↔ ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ) ) |
| 8 | 5 7 | mtbid | ⊢ ( 𝜑 → ¬ ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ) |
| 9 | oran | ⊢ ( ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ↔ ¬ ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ) | |
| 10 | 8 9 | sylibr | ⊢ ( 𝜑 → ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) |
| 11 | 10 4 | jca | ⊢ ( 𝜑 → ( ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ∧ ¬ 𝐵 < 𝐴 ) ) |
| 12 | pm5.61 | ⊢ ( ( ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ∧ ¬ 𝐵 < 𝐴 ) ↔ ( 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ) | |
| 13 | 11 12 | sylib | ⊢ ( 𝜑 → ( 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ) |
| 14 | 13 | simpld | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) |