This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Not equal and not larger implies smaller. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xrlttri5d.a | |- ( ph -> A e. RR* ) |
|
| xrlttri5d.b | |- ( ph -> B e. RR* ) |
||
| xrlttri5d.aneb | |- ( ph -> A =/= B ) |
||
| xrlttri5d.nlt | |- ( ph -> -. B < A ) |
||
| Assertion | xrlttri5d | |- ( ph -> A < B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlttri5d.a | |- ( ph -> A e. RR* ) |
|
| 2 | xrlttri5d.b | |- ( ph -> B e. RR* ) |
|
| 3 | xrlttri5d.aneb | |- ( ph -> A =/= B ) |
|
| 4 | xrlttri5d.nlt | |- ( ph -> -. B < A ) |
|
| 5 | 3 | neneqd | |- ( ph -> -. A = B ) |
| 6 | xrlttri3 | |- ( ( A e. RR* /\ B e. RR* ) -> ( A = B <-> ( -. A < B /\ -. B < A ) ) ) |
|
| 7 | 1 2 6 | syl2anc | |- ( ph -> ( A = B <-> ( -. A < B /\ -. B < A ) ) ) |
| 8 | 5 7 | mtbid | |- ( ph -> -. ( -. A < B /\ -. B < A ) ) |
| 9 | oran | |- ( ( A < B \/ B < A ) <-> -. ( -. A < B /\ -. B < A ) ) |
|
| 10 | 8 9 | sylibr | |- ( ph -> ( A < B \/ B < A ) ) |
| 11 | 10 4 | jca | |- ( ph -> ( ( A < B \/ B < A ) /\ -. B < A ) ) |
| 12 | pm5.61 | |- ( ( ( A < B \/ B < A ) /\ -. B < A ) <-> ( A < B /\ -. B < A ) ) |
|
| 13 | 11 12 | sylib | |- ( ph -> ( A < B /\ -. B < A ) ) |
| 14 | 13 | simpld | |- ( ph -> A < B ) |