This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an integer N is less than or equal to a real, and we subtract a quantity less than 1 , then N is less than or equal to the result. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zltlesub.n | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| zltlesub.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| zltlesub.nlea | ⊢ ( 𝜑 → 𝑁 ≤ 𝐴 ) | ||
| zltlesub.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| zltlesub.blt1 | ⊢ ( 𝜑 → 𝐵 < 1 ) | ||
| zltlesub.asb | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℤ ) | ||
| Assertion | zltlesub | ⊢ ( 𝜑 → 𝑁 ≤ ( 𝐴 − 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zltlesub.n | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 2 | zltlesub.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 3 | zltlesub.nlea | ⊢ ( 𝜑 → 𝑁 ≤ 𝐴 ) | |
| 4 | zltlesub.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 5 | zltlesub.blt1 | ⊢ ( 𝜑 → 𝐵 < 1 ) | |
| 6 | zltlesub.asb | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℤ ) | |
| 7 | 1 | zred | ⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 8 | 6 | zred | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℝ ) |
| 9 | 8 4 | readdcld | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) + 𝐵 ) ∈ ℝ ) |
| 10 | peano2re | ⊢ ( ( 𝐴 − 𝐵 ) ∈ ℝ → ( ( 𝐴 − 𝐵 ) + 1 ) ∈ ℝ ) | |
| 11 | 8 10 | syl | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) + 1 ) ∈ ℝ ) |
| 12 | 2 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 13 | 4 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 14 | 12 13 | npcand | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) + 𝐵 ) = 𝐴 ) |
| 15 | 3 14 | breqtrrd | ⊢ ( 𝜑 → 𝑁 ≤ ( ( 𝐴 − 𝐵 ) + 𝐵 ) ) |
| 16 | 1red | ⊢ ( 𝜑 → 1 ∈ ℝ ) | |
| 17 | 4 16 8 5 | ltadd2dd | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) + 𝐵 ) < ( ( 𝐴 − 𝐵 ) + 1 ) ) |
| 18 | 7 9 11 15 17 | lelttrd | ⊢ ( 𝜑 → 𝑁 < ( ( 𝐴 − 𝐵 ) + 1 ) ) |
| 19 | zleltp1 | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) → ( 𝑁 ≤ ( 𝐴 − 𝐵 ) ↔ 𝑁 < ( ( 𝐴 − 𝐵 ) + 1 ) ) ) | |
| 20 | 1 6 19 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ≤ ( 𝐴 − 𝐵 ) ↔ 𝑁 < ( ( 𝐴 − 𝐵 ) + 1 ) ) ) |
| 21 | 18 20 | mpbird | ⊢ ( 𝜑 → 𝑁 ≤ ( 𝐴 − 𝐵 ) ) |