This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A binary product of metric spaces is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xpsms.t | ⊢ 𝑇 = ( 𝑅 ×s 𝑆 ) | |
| Assertion | xpsxms | ⊢ ( ( 𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp ) → 𝑇 ∈ ∞MetSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsms.t | ⊢ 𝑇 = ( 𝑅 ×s 𝑆 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 4 | simpl | ⊢ ( ( 𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp ) → 𝑅 ∈ ∞MetSp ) | |
| 5 | simpr | ⊢ ( ( 𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp ) → 𝑆 ∈ ∞MetSp ) | |
| 6 | eqid | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) | |
| 7 | eqid | ⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( ( Scalar ‘ 𝑅 ) Xs { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } ) = ( ( Scalar ‘ 𝑅 ) Xs { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } ) | |
| 9 | 1 2 3 4 5 6 7 8 | xpsval | ⊢ ( ( 𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp ) → 𝑇 = ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) “s ( ( Scalar ‘ 𝑅 ) Xs { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } ) ) ) |
| 10 | 1 2 3 4 5 6 7 8 | xpsrnbas | ⊢ ( ( 𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp ) → ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } ) ) ) |
| 11 | 6 | xpsff1o2 | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) : ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) –1-1-onto→ ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) |
| 12 | f1ocnv | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) : ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) –1-1-onto→ ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) → ◡ ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) : ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) –1-1-onto→ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) ) | |
| 13 | 11 12 | mp1i | ⊢ ( ( 𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp ) → ◡ ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) : ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) –1-1-onto→ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) ) |
| 14 | fvexd | ⊢ ( ( 𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp ) → ( Scalar ‘ 𝑅 ) ∈ V ) | |
| 15 | 2onn | ⊢ 2o ∈ ω | |
| 16 | nnfi | ⊢ ( 2o ∈ ω → 2o ∈ Fin ) | |
| 17 | 15 16 | mp1i | ⊢ ( ( 𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp ) → 2o ∈ Fin ) |
| 18 | xpscf | ⊢ ( { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } : 2o ⟶ ∞MetSp ↔ ( 𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp ) ) | |
| 19 | 18 | biimpri | ⊢ ( ( 𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp ) → { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } : 2o ⟶ ∞MetSp ) |
| 20 | 8 | prdsxms | ⊢ ( ( ( Scalar ‘ 𝑅 ) ∈ V ∧ 2o ∈ Fin ∧ { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } : 2o ⟶ ∞MetSp ) → ( ( Scalar ‘ 𝑅 ) Xs { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } ) ∈ ∞MetSp ) |
| 21 | 14 17 19 20 | syl3anc | ⊢ ( ( 𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp ) → ( ( Scalar ‘ 𝑅 ) Xs { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } ) ∈ ∞MetSp ) |
| 22 | 9 10 13 21 | imasf1oxms | ⊢ ( ( 𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp ) → 𝑇 ∈ ∞MetSp ) |