This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The indexed structure product that appears in xpsval has the same base as the target of the function F . (Contributed by Mario Carneiro, 15-Aug-2015) (Revised by Jim Kingdon, 25-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpsval.t | ⊢ 𝑇 = ( 𝑅 ×s 𝑆 ) | |
| xpsval.x | ⊢ 𝑋 = ( Base ‘ 𝑅 ) | ||
| xpsval.y | ⊢ 𝑌 = ( Base ‘ 𝑆 ) | ||
| xpsval.1 | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | ||
| xpsval.2 | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | ||
| xpsval.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) | ||
| xpsval.k | ⊢ 𝐺 = ( Scalar ‘ 𝑅 ) | ||
| xpsval.u | ⊢ 𝑈 = ( 𝐺 Xs { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } ) | ||
| Assertion | xpsrnbas | ⊢ ( 𝜑 → ran 𝐹 = ( Base ‘ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsval.t | ⊢ 𝑇 = ( 𝑅 ×s 𝑆 ) | |
| 2 | xpsval.x | ⊢ 𝑋 = ( Base ‘ 𝑅 ) | |
| 3 | xpsval.y | ⊢ 𝑌 = ( Base ‘ 𝑆 ) | |
| 4 | xpsval.1 | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | |
| 5 | xpsval.2 | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | |
| 6 | xpsval.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) | |
| 7 | xpsval.k | ⊢ 𝐺 = ( Scalar ‘ 𝑅 ) | |
| 8 | xpsval.u | ⊢ 𝑈 = ( 𝐺 Xs { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 10 | 7 | fvexi | ⊢ 𝐺 ∈ V |
| 11 | 10 | a1i | ⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 12 | 2on | ⊢ 2o ∈ On | |
| 13 | 12 | a1i | ⊢ ( 𝜑 → 2o ∈ On ) |
| 14 | fnpr2o | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } Fn 2o ) | |
| 15 | 4 5 14 | syl2anc | ⊢ ( 𝜑 → { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } Fn 2o ) |
| 16 | 8 9 11 13 15 | prdsbas2 | ⊢ ( 𝜑 → ( Base ‘ 𝑈 ) = X 𝑘 ∈ 2o ( Base ‘ ( { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } ‘ 𝑘 ) ) ) |
| 17 | fvprif | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝑘 ∈ 2o ) → ( { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } ‘ 𝑘 ) = if ( 𝑘 = ∅ , 𝑅 , 𝑆 ) ) | |
| 18 | 17 | 3expia | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → ( 𝑘 ∈ 2o → ( { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } ‘ 𝑘 ) = if ( 𝑘 = ∅ , 𝑅 , 𝑆 ) ) ) |
| 19 | 4 5 18 | syl2anc | ⊢ ( 𝜑 → ( 𝑘 ∈ 2o → ( { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } ‘ 𝑘 ) = if ( 𝑘 = ∅ , 𝑅 , 𝑆 ) ) ) |
| 20 | 19 | imp | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 2o ) → ( { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } ‘ 𝑘 ) = if ( 𝑘 = ∅ , 𝑅 , 𝑆 ) ) |
| 21 | 20 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 2o ) → ( Base ‘ ( { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } ‘ 𝑘 ) ) = ( Base ‘ if ( 𝑘 = ∅ , 𝑅 , 𝑆 ) ) ) |
| 22 | ifeq12 | ⊢ ( ( 𝑋 = ( Base ‘ 𝑅 ) ∧ 𝑌 = ( Base ‘ 𝑆 ) ) → if ( 𝑘 = ∅ , 𝑋 , 𝑌 ) = if ( 𝑘 = ∅ , ( Base ‘ 𝑅 ) , ( Base ‘ 𝑆 ) ) ) | |
| 23 | 2 3 22 | mp2an | ⊢ if ( 𝑘 = ∅ , 𝑋 , 𝑌 ) = if ( 𝑘 = ∅ , ( Base ‘ 𝑅 ) , ( Base ‘ 𝑆 ) ) |
| 24 | fvif | ⊢ ( Base ‘ if ( 𝑘 = ∅ , 𝑅 , 𝑆 ) ) = if ( 𝑘 = ∅ , ( Base ‘ 𝑅 ) , ( Base ‘ 𝑆 ) ) | |
| 25 | 23 24 | eqtr4i | ⊢ if ( 𝑘 = ∅ , 𝑋 , 𝑌 ) = ( Base ‘ if ( 𝑘 = ∅ , 𝑅 , 𝑆 ) ) |
| 26 | 21 25 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 2o ) → ( Base ‘ ( { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } ‘ 𝑘 ) ) = if ( 𝑘 = ∅ , 𝑋 , 𝑌 ) ) |
| 27 | 26 | ixpeq2dva | ⊢ ( 𝜑 → X 𝑘 ∈ 2o ( Base ‘ ( { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } ‘ 𝑘 ) ) = X 𝑘 ∈ 2o if ( 𝑘 = ∅ , 𝑋 , 𝑌 ) ) |
| 28 | 6 | xpsfrn | ⊢ ran 𝐹 = X 𝑘 ∈ 2o if ( 𝑘 = ∅ , 𝑋 , 𝑌 ) |
| 29 | 27 28 | eqtr4di | ⊢ ( 𝜑 → X 𝑘 ∈ 2o ( Base ‘ ( { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } ‘ 𝑘 ) ) = ran 𝐹 ) |
| 30 | 16 29 | eqtr2d | ⊢ ( 𝜑 → ran 𝐹 = ( Base ‘ 𝑈 ) ) |