This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of a Cartesian product with a function. (Contributed by Zhi Wang, 25-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpco2 | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝐵 × 𝐶 ) ∘ 𝐹 ) = ( 𝐴 × 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco | ⊢ Rel ( ( 𝐵 × 𝐶 ) ∘ 𝐹 ) | |
| 2 | relxp | ⊢ Rel ( 𝐴 × 𝐶 ) | |
| 3 | vex | ⊢ 𝑥 ∈ V | |
| 4 | vex | ⊢ 𝑧 ∈ V | |
| 5 | 3 4 | breldm | ⊢ ( 𝑥 𝐹 𝑧 → 𝑥 ∈ dom 𝐹 ) |
| 6 | 5 | ad2antrl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 𝐹 𝑧 ∧ 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ) → 𝑥 ∈ dom 𝐹 ) |
| 7 | fdm | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → dom 𝐹 = 𝐴 ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 𝐹 𝑧 ∧ 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ) → dom 𝐹 = 𝐴 ) |
| 9 | 6 8 | eleqtrd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 𝐹 𝑧 ∧ 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ) → 𝑥 ∈ 𝐴 ) |
| 10 | brxp | ⊢ ( 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) | |
| 11 | 10 | simprbi | ⊢ ( 𝑧 ( 𝐵 × 𝐶 ) 𝑦 → 𝑦 ∈ 𝐶 ) |
| 12 | 11 | ad2antll | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 𝐹 𝑧 ∧ 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ) → 𝑦 ∈ 𝐶 ) |
| 13 | 9 12 | jca | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 𝐹 𝑧 ∧ 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) |
| 14 | 13 | ex | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝑥 𝐹 𝑧 ∧ 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 15 | 14 | exlimdv | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∃ 𝑧 ( 𝑥 𝐹 𝑧 ∧ 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 16 | 15 | imp | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∃ 𝑧 ( 𝑥 𝐹 𝑧 ∧ 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) |
| 17 | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) | |
| 18 | 17 | adantrr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 19 | ffvbr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 𝐹 ( 𝐹 ‘ 𝑥 ) ) | |
| 20 | 19 | adantrr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑥 𝐹 ( 𝐹 ‘ 𝑥 ) ) |
| 21 | simprr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑦 ∈ 𝐶 ) | |
| 22 | brxp | ⊢ ( ( 𝐹 ‘ 𝑥 ) ( 𝐵 × 𝐶 ) 𝑦 ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) | |
| 23 | 18 21 22 | sylanbrc | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑥 ) ( 𝐵 × 𝐶 ) 𝑦 ) |
| 24 | 20 23 | jca | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 𝐹 ( 𝐹 ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ( 𝐵 × 𝐶 ) 𝑦 ) ) |
| 25 | breq2 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → ( 𝑥 𝐹 𝑧 ↔ 𝑥 𝐹 ( 𝐹 ‘ 𝑥 ) ) ) | |
| 26 | breq1 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → ( 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) ( 𝐵 × 𝐶 ) 𝑦 ) ) | |
| 27 | 25 26 | anbi12d | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝑥 𝐹 𝑧 ∧ 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ↔ ( 𝑥 𝐹 ( 𝐹 ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ( 𝐵 × 𝐶 ) 𝑦 ) ) ) |
| 28 | 18 24 27 | spcedv | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) → ∃ 𝑧 ( 𝑥 𝐹 𝑧 ∧ 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ) |
| 29 | 16 28 | impbida | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∃ 𝑧 ( 𝑥 𝐹 𝑧 ∧ 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 30 | vex | ⊢ 𝑦 ∈ V | |
| 31 | 3 30 | brco | ⊢ ( 𝑥 ( ( 𝐵 × 𝐶 ) ∘ 𝐹 ) 𝑦 ↔ ∃ 𝑧 ( 𝑥 𝐹 𝑧 ∧ 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ) |
| 32 | brxp | ⊢ ( 𝑥 ( 𝐴 × 𝐶 ) 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) | |
| 33 | 29 31 32 | 3bitr4g | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝑥 ( ( 𝐵 × 𝐶 ) ∘ 𝐹 ) 𝑦 ↔ 𝑥 ( 𝐴 × 𝐶 ) 𝑦 ) ) |
| 34 | 1 2 33 | eqbrrdiv | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝐵 × 𝐶 ) ∘ 𝐹 ) = ( 𝐴 × 𝐶 ) ) |