This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of a Cartesian product with a function. (Contributed by Zhi Wang, 25-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpco2 | |- ( F : A --> B -> ( ( B X. C ) o. F ) = ( A X. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco | |- Rel ( ( B X. C ) o. F ) |
|
| 2 | relxp | |- Rel ( A X. C ) |
|
| 3 | vex | |- x e. _V |
|
| 4 | vex | |- z e. _V |
|
| 5 | 3 4 | breldm | |- ( x F z -> x e. dom F ) |
| 6 | 5 | ad2antrl | |- ( ( F : A --> B /\ ( x F z /\ z ( B X. C ) y ) ) -> x e. dom F ) |
| 7 | fdm | |- ( F : A --> B -> dom F = A ) |
|
| 8 | 7 | adantr | |- ( ( F : A --> B /\ ( x F z /\ z ( B X. C ) y ) ) -> dom F = A ) |
| 9 | 6 8 | eleqtrd | |- ( ( F : A --> B /\ ( x F z /\ z ( B X. C ) y ) ) -> x e. A ) |
| 10 | brxp | |- ( z ( B X. C ) y <-> ( z e. B /\ y e. C ) ) |
|
| 11 | 10 | simprbi | |- ( z ( B X. C ) y -> y e. C ) |
| 12 | 11 | ad2antll | |- ( ( F : A --> B /\ ( x F z /\ z ( B X. C ) y ) ) -> y e. C ) |
| 13 | 9 12 | jca | |- ( ( F : A --> B /\ ( x F z /\ z ( B X. C ) y ) ) -> ( x e. A /\ y e. C ) ) |
| 14 | 13 | ex | |- ( F : A --> B -> ( ( x F z /\ z ( B X. C ) y ) -> ( x e. A /\ y e. C ) ) ) |
| 15 | 14 | exlimdv | |- ( F : A --> B -> ( E. z ( x F z /\ z ( B X. C ) y ) -> ( x e. A /\ y e. C ) ) ) |
| 16 | 15 | imp | |- ( ( F : A --> B /\ E. z ( x F z /\ z ( B X. C ) y ) ) -> ( x e. A /\ y e. C ) ) |
| 17 | ffvelcdm | |- ( ( F : A --> B /\ x e. A ) -> ( F ` x ) e. B ) |
|
| 18 | 17 | adantrr | |- ( ( F : A --> B /\ ( x e. A /\ y e. C ) ) -> ( F ` x ) e. B ) |
| 19 | ffvbr | |- ( ( F : A --> B /\ x e. A ) -> x F ( F ` x ) ) |
|
| 20 | 19 | adantrr | |- ( ( F : A --> B /\ ( x e. A /\ y e. C ) ) -> x F ( F ` x ) ) |
| 21 | simprr | |- ( ( F : A --> B /\ ( x e. A /\ y e. C ) ) -> y e. C ) |
|
| 22 | brxp | |- ( ( F ` x ) ( B X. C ) y <-> ( ( F ` x ) e. B /\ y e. C ) ) |
|
| 23 | 18 21 22 | sylanbrc | |- ( ( F : A --> B /\ ( x e. A /\ y e. C ) ) -> ( F ` x ) ( B X. C ) y ) |
| 24 | 20 23 | jca | |- ( ( F : A --> B /\ ( x e. A /\ y e. C ) ) -> ( x F ( F ` x ) /\ ( F ` x ) ( B X. C ) y ) ) |
| 25 | breq2 | |- ( z = ( F ` x ) -> ( x F z <-> x F ( F ` x ) ) ) |
|
| 26 | breq1 | |- ( z = ( F ` x ) -> ( z ( B X. C ) y <-> ( F ` x ) ( B X. C ) y ) ) |
|
| 27 | 25 26 | anbi12d | |- ( z = ( F ` x ) -> ( ( x F z /\ z ( B X. C ) y ) <-> ( x F ( F ` x ) /\ ( F ` x ) ( B X. C ) y ) ) ) |
| 28 | 18 24 27 | spcedv | |- ( ( F : A --> B /\ ( x e. A /\ y e. C ) ) -> E. z ( x F z /\ z ( B X. C ) y ) ) |
| 29 | 16 28 | impbida | |- ( F : A --> B -> ( E. z ( x F z /\ z ( B X. C ) y ) <-> ( x e. A /\ y e. C ) ) ) |
| 30 | vex | |- y e. _V |
|
| 31 | 3 30 | brco | |- ( x ( ( B X. C ) o. F ) y <-> E. z ( x F z /\ z ( B X. C ) y ) ) |
| 32 | brxp | |- ( x ( A X. C ) y <-> ( x e. A /\ y e. C ) ) |
|
| 33 | 29 31 32 | 3bitr4g | |- ( F : A --> B -> ( x ( ( B X. C ) o. F ) y <-> x ( A X. C ) y ) ) |
| 34 | 1 2 33 | eqbrrdiv | |- ( F : A --> B -> ( ( B X. C ) o. F ) = ( A X. C ) ) |