This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication by minus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmulmnf1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 𝐴 ·e -∞ ) = -∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnegpnf | ⊢ -𝑒 +∞ = -∞ | |
| 2 | 1 | oveq2i | ⊢ ( 𝐴 ·e -𝑒 +∞ ) = ( 𝐴 ·e -∞ ) |
| 3 | simpl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ* ) | |
| 4 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 5 | xmulneg2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐴 ·e -𝑒 +∞ ) = -𝑒 ( 𝐴 ·e +∞ ) ) | |
| 6 | 3 4 5 | sylancl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 𝐴 ·e -𝑒 +∞ ) = -𝑒 ( 𝐴 ·e +∞ ) ) |
| 7 | xmulpnf1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 𝐴 ·e +∞ ) = +∞ ) | |
| 8 | xnegeq | ⊢ ( ( 𝐴 ·e +∞ ) = +∞ → -𝑒 ( 𝐴 ·e +∞ ) = -𝑒 +∞ ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → -𝑒 ( 𝐴 ·e +∞ ) = -𝑒 +∞ ) |
| 10 | 9 1 | eqtrdi | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → -𝑒 ( 𝐴 ·e +∞ ) = -∞ ) |
| 11 | 6 10 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 𝐴 ·e -𝑒 +∞ ) = -∞ ) |
| 12 | 2 11 | eqtr3id | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 𝐴 ·e -∞ ) = -∞ ) |