This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of mulm1 . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmulm1 | ⊢ ( 𝐴 ∈ ℝ* → ( - 1 ·e 𝐴 ) = -𝑒 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re | ⊢ 1 ∈ ℝ | |
| 2 | rexneg | ⊢ ( 1 ∈ ℝ → -𝑒 1 = - 1 ) | |
| 3 | 1 2 | ax-mp | ⊢ -𝑒 1 = - 1 |
| 4 | 3 | oveq1i | ⊢ ( -𝑒 1 ·e 𝐴 ) = ( - 1 ·e 𝐴 ) |
| 5 | 1xr | ⊢ 1 ∈ ℝ* | |
| 6 | xmulneg1 | ⊢ ( ( 1 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( -𝑒 1 ·e 𝐴 ) = -𝑒 ( 1 ·e 𝐴 ) ) | |
| 7 | 5 6 | mpan | ⊢ ( 𝐴 ∈ ℝ* → ( -𝑒 1 ·e 𝐴 ) = -𝑒 ( 1 ·e 𝐴 ) ) |
| 8 | 4 7 | eqtr3id | ⊢ ( 𝐴 ∈ ℝ* → ( - 1 ·e 𝐴 ) = -𝑒 ( 1 ·e 𝐴 ) ) |
| 9 | xmullid | ⊢ ( 𝐴 ∈ ℝ* → ( 1 ·e 𝐴 ) = 𝐴 ) | |
| 10 | xnegeq | ⊢ ( ( 1 ·e 𝐴 ) = 𝐴 → -𝑒 ( 1 ·e 𝐴 ) = -𝑒 𝐴 ) | |
| 11 | 9 10 | syl | ⊢ ( 𝐴 ∈ ℝ* → -𝑒 ( 1 ·e 𝐴 ) = -𝑒 𝐴 ) |
| 12 | 8 11 | eqtrd | ⊢ ( 𝐴 ∈ ℝ* → ( - 1 ·e 𝐴 ) = -𝑒 𝐴 ) |