This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance function of an extended metric space is positive for unequal points. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmetgt0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ≠ 𝐵 ↔ 0 < ( 𝐴 𝐷 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetge0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 0 ≤ ( 𝐴 𝐷 𝐵 ) ) | |
| 2 | 1 | biantrud | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) ≤ 0 ↔ ( ( 𝐴 𝐷 𝐵 ) ≤ 0 ∧ 0 ≤ ( 𝐴 𝐷 𝐵 ) ) ) ) |
| 3 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ) | |
| 4 | 0xr | ⊢ 0 ∈ ℝ* | |
| 5 | xrletri3 | ⊢ ( ( ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( 𝐴 𝐷 𝐵 ) = 0 ↔ ( ( 𝐴 𝐷 𝐵 ) ≤ 0 ∧ 0 ≤ ( 𝐴 𝐷 𝐵 ) ) ) ) | |
| 6 | 3 4 5 | sylancl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) = 0 ↔ ( ( 𝐴 𝐷 𝐵 ) ≤ 0 ∧ 0 ≤ ( 𝐴 𝐷 𝐵 ) ) ) ) |
| 7 | 2 6 | bitr4d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) ≤ 0 ↔ ( 𝐴 𝐷 𝐵 ) = 0 ) ) |
| 8 | xrlenlt | ⊢ ( ( ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( 𝐴 𝐷 𝐵 ) ≤ 0 ↔ ¬ 0 < ( 𝐴 𝐷 𝐵 ) ) ) | |
| 9 | 3 4 8 | sylancl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) ≤ 0 ↔ ¬ 0 < ( 𝐴 𝐷 𝐵 ) ) ) |
| 10 | xmeteq0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) | |
| 11 | 7 9 10 | 3bitr3d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ¬ 0 < ( 𝐴 𝐷 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| 12 | 11 | necon1abid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ≠ 𝐵 ↔ 0 < ( 𝐴 𝐷 𝐵 ) ) ) |