This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance function of an extended metric space is positive for unequal points. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmetgt0 | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( A =/= B <-> 0 < ( A D B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetge0 | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> 0 <_ ( A D B ) ) |
|
| 2 | 1 | biantrud | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( ( A D B ) <_ 0 <-> ( ( A D B ) <_ 0 /\ 0 <_ ( A D B ) ) ) ) |
| 3 | xmetcl | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( A D B ) e. RR* ) |
|
| 4 | 0xr | |- 0 e. RR* |
|
| 5 | xrletri3 | |- ( ( ( A D B ) e. RR* /\ 0 e. RR* ) -> ( ( A D B ) = 0 <-> ( ( A D B ) <_ 0 /\ 0 <_ ( A D B ) ) ) ) |
|
| 6 | 3 4 5 | sylancl | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( ( A D B ) = 0 <-> ( ( A D B ) <_ 0 /\ 0 <_ ( A D B ) ) ) ) |
| 7 | 2 6 | bitr4d | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( ( A D B ) <_ 0 <-> ( A D B ) = 0 ) ) |
| 8 | xrlenlt | |- ( ( ( A D B ) e. RR* /\ 0 e. RR* ) -> ( ( A D B ) <_ 0 <-> -. 0 < ( A D B ) ) ) |
|
| 9 | 3 4 8 | sylancl | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( ( A D B ) <_ 0 <-> -. 0 < ( A D B ) ) ) |
| 10 | xmeteq0 | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( ( A D B ) = 0 <-> A = B ) ) |
|
| 11 | 7 9 10 | 3bitr3d | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( -. 0 < ( A D B ) <-> A = B ) ) |
| 12 | 11 | necon1abid | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( A =/= B <-> 0 < ( A D B ) ) ) |