This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of ltmul1 . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xltmul1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 ·e 𝐶 ) < ( 𝐵 ·e 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xlemul1 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐵 ≤ 𝐴 ↔ ( 𝐵 ·e 𝐶 ) ≤ ( 𝐴 ·e 𝐶 ) ) ) | |
| 2 | 1 | 3com12 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐵 ≤ 𝐴 ↔ ( 𝐵 ·e 𝐶 ) ≤ ( 𝐴 ·e 𝐶 ) ) ) |
| 3 | 2 | notbid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( ¬ 𝐵 ≤ 𝐴 ↔ ¬ ( 𝐵 ·e 𝐶 ) ≤ ( 𝐴 ·e 𝐶 ) ) ) |
| 4 | xrltnle | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴 ) ) | |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴 ) ) |
| 6 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → 𝐴 ∈ ℝ* ) | |
| 7 | rpxr | ⊢ ( 𝐶 ∈ ℝ+ → 𝐶 ∈ ℝ* ) | |
| 8 | 7 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ∈ ℝ* ) |
| 9 | xmulcl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e 𝐶 ) ∈ ℝ* ) | |
| 10 | 6 8 9 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ·e 𝐶 ) ∈ ℝ* ) |
| 11 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → 𝐵 ∈ ℝ* ) | |
| 12 | xmulcl | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) | |
| 13 | 11 8 12 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
| 14 | xrltnle | ⊢ ( ( ( 𝐴 ·e 𝐶 ) ∈ ℝ* ∧ ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) → ( ( 𝐴 ·e 𝐶 ) < ( 𝐵 ·e 𝐶 ) ↔ ¬ ( 𝐵 ·e 𝐶 ) ≤ ( 𝐴 ·e 𝐶 ) ) ) | |
| 15 | 10 13 14 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 ·e 𝐶 ) < ( 𝐵 ·e 𝐶 ) ↔ ¬ ( 𝐵 ·e 𝐶 ) ≤ ( 𝐴 ·e 𝐶 ) ) ) |
| 16 | 3 5 15 | 3bitr4d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 ·e 𝐶 ) < ( 𝐵 ·e 𝐶 ) ) ) |