This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commuted version of xadddi2 . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xadddi2r | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xadddi2 | ⊢ ( ( 𝐶 ∈ ℝ* ∧ ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ) → ( 𝐶 ·e ( 𝐴 +𝑒 𝐵 ) ) = ( ( 𝐶 ·e 𝐴 ) +𝑒 ( 𝐶 ·e 𝐵 ) ) ) | |
| 2 | 1 | 3coml | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ* ) → ( 𝐶 ·e ( 𝐴 +𝑒 𝐵 ) ) = ( ( 𝐶 ·e 𝐴 ) +𝑒 ( 𝐶 ·e 𝐵 ) ) ) |
| 3 | simp1l | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ* ) → 𝐴 ∈ ℝ* ) | |
| 4 | simp2l | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ* ) → 𝐵 ∈ ℝ* ) | |
| 5 | xaddcl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 +𝑒 𝐵 ) ∈ ℝ* ) | |
| 6 | 3 4 5 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 +𝑒 𝐵 ) ∈ ℝ* ) |
| 7 | simp3 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ* ) → 𝐶 ∈ ℝ* ) | |
| 8 | xmulcom | ⊢ ( ( ( 𝐴 +𝑒 𝐵 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( 𝐶 ·e ( 𝐴 +𝑒 𝐵 ) ) ) | |
| 9 | 6 7 8 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( 𝐶 ·e ( 𝐴 +𝑒 𝐵 ) ) ) |
| 10 | xmulcom | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e 𝐶 ) = ( 𝐶 ·e 𝐴 ) ) | |
| 11 | 3 7 10 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e 𝐶 ) = ( 𝐶 ·e 𝐴 ) ) |
| 12 | xmulcom | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) = ( 𝐶 ·e 𝐵 ) ) | |
| 13 | 4 7 12 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) = ( 𝐶 ·e 𝐵 ) ) |
| 14 | 11 13 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) = ( ( 𝐶 ·e 𝐴 ) +𝑒 ( 𝐶 ·e 𝐵 ) ) ) |
| 15 | 2 9 14 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) ) |