This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of 2times . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | x2times | |- ( A e. RR* -> ( 2 *e A ) = ( A +e A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 2 | 1re | |- 1 e. RR |
|
| 3 | rexadd | |- ( ( 1 e. RR /\ 1 e. RR ) -> ( 1 +e 1 ) = ( 1 + 1 ) ) |
|
| 4 | 2 2 3 | mp2an | |- ( 1 +e 1 ) = ( 1 + 1 ) |
| 5 | 1 4 | eqtr4i | |- 2 = ( 1 +e 1 ) |
| 6 | 5 | oveq1i | |- ( 2 *e A ) = ( ( 1 +e 1 ) *e A ) |
| 7 | 1xr | |- 1 e. RR* |
|
| 8 | 0le1 | |- 0 <_ 1 |
|
| 9 | 7 8 | pm3.2i | |- ( 1 e. RR* /\ 0 <_ 1 ) |
| 10 | xadddi2r | |- ( ( ( 1 e. RR* /\ 0 <_ 1 ) /\ ( 1 e. RR* /\ 0 <_ 1 ) /\ A e. RR* ) -> ( ( 1 +e 1 ) *e A ) = ( ( 1 *e A ) +e ( 1 *e A ) ) ) |
|
| 11 | 9 9 10 | mp3an12 | |- ( A e. RR* -> ( ( 1 +e 1 ) *e A ) = ( ( 1 *e A ) +e ( 1 *e A ) ) ) |
| 12 | xmullid | |- ( A e. RR* -> ( 1 *e A ) = A ) |
|
| 13 | 12 12 | oveq12d | |- ( A e. RR* -> ( ( 1 *e A ) +e ( 1 *e A ) ) = ( A +e A ) ) |
| 14 | 11 13 | eqtrd | |- ( A e. RR* -> ( ( 1 +e 1 ) *e A ) = ( A +e A ) ) |
| 15 | 6 14 | eqtrid | |- ( A e. RR* -> ( 2 *e A ) = ( A +e A ) ) |