This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a word W represents a walk of a fixed length N , then the first and the last symbol of the word is a vertex. (Contributed by AV, 14-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wwlknllvtx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | wwlknllvtx | ⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( 𝑊 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑊 ‘ 𝑁 ) ∈ 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlknllvtx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | wwlknbp1 | ⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) | |
| 3 | wwlknvtx | ⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑊 ‘ 𝑥 ) ∈ ( Vtx ‘ 𝐺 ) ) | |
| 4 | 0elfz | ⊢ ( 𝑁 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) ) | |
| 5 | fveq2 | ⊢ ( 𝑥 = 0 → ( 𝑊 ‘ 𝑥 ) = ( 𝑊 ‘ 0 ) ) | |
| 6 | 5 | eleq1d | ⊢ ( 𝑥 = 0 → ( ( 𝑊 ‘ 𝑥 ) ∈ ( Vtx ‘ 𝐺 ) ↔ ( 𝑊 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 = 0 ) → ( ( 𝑊 ‘ 𝑥 ) ∈ ( Vtx ‘ 𝐺 ) ↔ ( 𝑊 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 8 | 4 7 | rspcdv | ⊢ ( 𝑁 ∈ ℕ0 → ( ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑊 ‘ 𝑥 ) ∈ ( Vtx ‘ 𝐺 ) → ( 𝑊 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 9 | nn0fz0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( 0 ... 𝑁 ) ) | |
| 10 | 9 | biimpi | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 11 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( 𝑊 ‘ 𝑥 ) = ( 𝑊 ‘ 𝑁 ) ) | |
| 12 | 11 | eleq1d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑊 ‘ 𝑥 ) ∈ ( Vtx ‘ 𝐺 ) ↔ ( 𝑊 ‘ 𝑁 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 13 | 12 | adantl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 = 𝑁 ) → ( ( 𝑊 ‘ 𝑥 ) ∈ ( Vtx ‘ 𝐺 ) ↔ ( 𝑊 ‘ 𝑁 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 14 | 10 13 | rspcdv | ⊢ ( 𝑁 ∈ ℕ0 → ( ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑊 ‘ 𝑥 ) ∈ ( Vtx ‘ 𝐺 ) → ( 𝑊 ‘ 𝑁 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 15 | 8 14 | jcad | ⊢ ( 𝑁 ∈ ℕ0 → ( ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑊 ‘ 𝑥 ) ∈ ( Vtx ‘ 𝐺 ) → ( ( 𝑊 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 ‘ 𝑁 ) ∈ ( Vtx ‘ 𝐺 ) ) ) ) |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑊 ‘ 𝑥 ) ∈ ( Vtx ‘ 𝐺 ) → ( ( 𝑊 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 ‘ 𝑁 ) ∈ ( Vtx ‘ 𝐺 ) ) ) ) |
| 17 | 2 3 16 | sylc | ⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( 𝑊 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 ‘ 𝑁 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 18 | 1 | eleq2i | ⊢ ( ( 𝑊 ‘ 0 ) ∈ 𝑉 ↔ ( 𝑊 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 19 | 1 | eleq2i | ⊢ ( ( 𝑊 ‘ 𝑁 ) ∈ 𝑉 ↔ ( 𝑊 ‘ 𝑁 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 20 | 18 19 | anbi12i | ⊢ ( ( ( 𝑊 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑊 ‘ 𝑁 ) ∈ 𝑉 ) ↔ ( ( 𝑊 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 ‘ 𝑁 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 21 | 17 20 | sylibr | ⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( 𝑊 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑊 ‘ 𝑁 ) ∈ 𝑉 ) ) |