This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Basic properties of a walk of a fixed length (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 16-Jul-2018) (Revised by AV, 9-Apr-2021) (Proof shortened by AV, 20-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wwlkbp.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | wwlknbp | ⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlkbp.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | df-wwlksn | ⊢ WWalksN = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ { 𝑤 ∈ ( WWalks ‘ 𝑔 ) ∣ ( ♯ ‘ 𝑤 ) = ( 𝑛 + 1 ) } ) | |
| 3 | 2 | elmpocl | ⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ) |
| 4 | simpl | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ) → ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ) | |
| 5 | 4 | ancomd | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ) → ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ) ) |
| 6 | iswwlksn | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ↔ ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ↔ ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) ) |
| 8 | 1 | wwlkbp | ⊢ ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑊 ∈ Word 𝑉 ) ) |
| 9 | 8 | simprd | ⊢ ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) → 𝑊 ∈ Word 𝑉 ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → 𝑊 ∈ Word 𝑉 ) |
| 11 | 7 10 | biimtrdi | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → 𝑊 ∈ Word 𝑉 ) ) |
| 12 | 11 | imp | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ) → 𝑊 ∈ Word 𝑉 ) |
| 13 | df-3an | ⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉 ) ↔ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑊 ∈ Word 𝑉 ) ) | |
| 14 | 5 12 13 | sylanbrc | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ) → ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉 ) ) |
| 15 | 3 14 | mpancom | ⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉 ) ) |