This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Basic properties of a walk of a fixed length (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 16-Jul-2018) (Revised by AV, 9-Apr-2021) (Proof shortened by AV, 20-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wwlkbp.v | |- V = ( Vtx ` G ) |
|
| Assertion | wwlknbp | |- ( W e. ( N WWalksN G ) -> ( G e. _V /\ N e. NN0 /\ W e. Word V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlkbp.v | |- V = ( Vtx ` G ) |
|
| 2 | df-wwlksn | |- WWalksN = ( n e. NN0 , g e. _V |-> { w e. ( WWalks ` g ) | ( # ` w ) = ( n + 1 ) } ) |
|
| 3 | 2 | elmpocl | |- ( W e. ( N WWalksN G ) -> ( N e. NN0 /\ G e. _V ) ) |
| 4 | simpl | |- ( ( ( N e. NN0 /\ G e. _V ) /\ W e. ( N WWalksN G ) ) -> ( N e. NN0 /\ G e. _V ) ) |
|
| 5 | 4 | ancomd | |- ( ( ( N e. NN0 /\ G e. _V ) /\ W e. ( N WWalksN G ) ) -> ( G e. _V /\ N e. NN0 ) ) |
| 6 | iswwlksn | |- ( N e. NN0 -> ( W e. ( N WWalksN G ) <-> ( W e. ( WWalks ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) ) |
|
| 7 | 6 | adantr | |- ( ( N e. NN0 /\ G e. _V ) -> ( W e. ( N WWalksN G ) <-> ( W e. ( WWalks ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) ) |
| 8 | 1 | wwlkbp | |- ( W e. ( WWalks ` G ) -> ( G e. _V /\ W e. Word V ) ) |
| 9 | 8 | simprd | |- ( W e. ( WWalks ` G ) -> W e. Word V ) |
| 10 | 9 | adantr | |- ( ( W e. ( WWalks ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> W e. Word V ) |
| 11 | 7 10 | biimtrdi | |- ( ( N e. NN0 /\ G e. _V ) -> ( W e. ( N WWalksN G ) -> W e. Word V ) ) |
| 12 | 11 | imp | |- ( ( ( N e. NN0 /\ G e. _V ) /\ W e. ( N WWalksN G ) ) -> W e. Word V ) |
| 13 | df-3an | |- ( ( G e. _V /\ N e. NN0 /\ W e. Word V ) <-> ( ( G e. _V /\ N e. NN0 ) /\ W e. Word V ) ) |
|
| 14 | 5 12 13 | sylanbrc | |- ( ( ( N e. NN0 /\ G e. _V ) /\ W e. ( N WWalksN G ) ) -> ( G e. _V /\ N e. NN0 /\ W e. Word V ) ) |
| 15 | 3 14 | mpancom | |- ( W e. ( N WWalksN G ) -> ( G e. _V /\ N e. NN0 /\ W e. Word V ) ) |