This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017) (Proof shortened by AV, 28-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wunress.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| wunress.2 | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | ||
| wunress.3 | ⊢ ( 𝜑 → 𝑊 ∈ 𝑈 ) | ||
| Assertion | wunress | ⊢ ( 𝜑 → ( 𝑊 ↾s 𝐴 ) ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wunress.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 2 | wunress.2 | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | |
| 3 | wunress.3 | ⊢ ( 𝜑 → 𝑊 ∈ 𝑈 ) | |
| 4 | eqid | ⊢ ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s 𝐴 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 6 | 4 5 | ressval | ⊢ ( ( 𝑊 ∈ 𝑈 ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s 𝐴 ) = if ( ( Base ‘ 𝑊 ) ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) ) |
| 7 | 3 6 | sylan | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s 𝐴 ) = if ( ( Base ‘ 𝑊 ) ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) ) |
| 8 | 1 2 | basndxelwund | ⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ 𝑈 ) |
| 9 | incom | ⊢ ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) = ( ( Base ‘ 𝑊 ) ∩ 𝐴 ) | |
| 10 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 11 | 10 1 3 | wunstr | ⊢ ( 𝜑 → ( Base ‘ 𝑊 ) ∈ 𝑈 ) |
| 12 | 1 11 | wunin | ⊢ ( 𝜑 → ( ( Base ‘ 𝑊 ) ∩ 𝐴 ) ∈ 𝑈 ) |
| 13 | 9 12 | eqeltrid | ⊢ ( 𝜑 → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ∈ 𝑈 ) |
| 14 | 1 8 13 | wunop | ⊢ ( 𝜑 → 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ∈ 𝑈 ) |
| 15 | 1 3 14 | wunsets | ⊢ ( 𝜑 → ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ∈ 𝑈 ) |
| 16 | 3 15 | ifcld | ⊢ ( 𝜑 → if ( ( Base ‘ 𝑊 ) ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) ∈ 𝑈 ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → if ( ( Base ‘ 𝑊 ) ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) ∈ 𝑈 ) |
| 18 | 7 17 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s 𝐴 ) ∈ 𝑈 ) |
| 19 | 18 | ex | ⊢ ( 𝜑 → ( 𝐴 ∈ V → ( 𝑊 ↾s 𝐴 ) ∈ 𝑈 ) ) |
| 20 | 1 | wun0 | ⊢ ( 𝜑 → ∅ ∈ 𝑈 ) |
| 21 | reldmress | ⊢ Rel dom ↾s | |
| 22 | 21 | ovprc2 | ⊢ ( ¬ 𝐴 ∈ V → ( 𝑊 ↾s 𝐴 ) = ∅ ) |
| 23 | 22 | eleq1d | ⊢ ( ¬ 𝐴 ∈ V → ( ( 𝑊 ↾s 𝐴 ) ∈ 𝑈 ↔ ∅ ∈ 𝑈 ) ) |
| 24 | 20 23 | syl5ibrcom | ⊢ ( 𝜑 → ( ¬ 𝐴 ∈ V → ( 𝑊 ↾s 𝐴 ) ∈ 𝑈 ) ) |
| 25 | 19 24 | pm2.61d | ⊢ ( 𝜑 → ( 𝑊 ↾s 𝐴 ) ∈ 𝑈 ) |