This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressbas.r | ⊢ 𝑅 = ( 𝑊 ↾s 𝐴 ) | |
| ressbas.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | ||
| Assertion | ressval | ⊢ ( ( 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ) → 𝑅 = if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressbas.r | ⊢ 𝑅 = ( 𝑊 ↾s 𝐴 ) | |
| 2 | ressbas.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 3 | elex | ⊢ ( 𝑊 ∈ 𝑋 → 𝑊 ∈ V ) | |
| 4 | elex | ⊢ ( 𝐴 ∈ 𝑌 → 𝐴 ∈ V ) | |
| 5 | simpl | ⊢ ( ( 𝑊 ∈ V ∧ 𝐴 ∈ V ) → 𝑊 ∈ V ) | |
| 6 | ovex | ⊢ ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ∈ V | |
| 7 | ifcl | ⊢ ( ( 𝑊 ∈ V ∧ ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ∈ V ) → if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) ∈ V ) | |
| 8 | 5 6 7 | sylancl | ⊢ ( ( 𝑊 ∈ V ∧ 𝐴 ∈ V ) → if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) ∈ V ) |
| 9 | simpl | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = 𝐴 ) → 𝑤 = 𝑊 ) | |
| 10 | 9 | fveq2d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = 𝐴 ) → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
| 11 | 10 2 | eqtr4di | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = 𝐴 ) → ( Base ‘ 𝑤 ) = 𝐵 ) |
| 12 | simpr | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = 𝐴 ) → 𝑎 = 𝐴 ) | |
| 13 | 11 12 | sseq12d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = 𝐴 ) → ( ( Base ‘ 𝑤 ) ⊆ 𝑎 ↔ 𝐵 ⊆ 𝐴 ) ) |
| 14 | 12 11 | ineq12d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = 𝐴 ) → ( 𝑎 ∩ ( Base ‘ 𝑤 ) ) = ( 𝐴 ∩ 𝐵 ) ) |
| 15 | 14 | opeq2d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = 𝐴 ) → 〈 ( Base ‘ ndx ) , ( 𝑎 ∩ ( Base ‘ 𝑤 ) ) 〉 = 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) |
| 16 | 9 15 | oveq12d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = 𝐴 ) → ( 𝑤 sSet 〈 ( Base ‘ ndx ) , ( 𝑎 ∩ ( Base ‘ 𝑤 ) ) 〉 ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) |
| 17 | 13 9 16 | ifbieq12d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = 𝐴 ) → if ( ( Base ‘ 𝑤 ) ⊆ 𝑎 , 𝑤 , ( 𝑤 sSet 〈 ( Base ‘ ndx ) , ( 𝑎 ∩ ( Base ‘ 𝑤 ) ) 〉 ) ) = if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) ) |
| 18 | df-ress | ⊢ ↾s = ( 𝑤 ∈ V , 𝑎 ∈ V ↦ if ( ( Base ‘ 𝑤 ) ⊆ 𝑎 , 𝑤 , ( 𝑤 sSet 〈 ( Base ‘ ndx ) , ( 𝑎 ∩ ( Base ‘ 𝑤 ) ) 〉 ) ) ) | |
| 19 | 17 18 | ovmpoga | ⊢ ( ( 𝑊 ∈ V ∧ 𝐴 ∈ V ∧ if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) ∈ V ) → ( 𝑊 ↾s 𝐴 ) = if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) ) |
| 20 | 8 19 | mpd3an3 | ⊢ ( ( 𝑊 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s 𝐴 ) = if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) ) |
| 21 | 3 4 20 | syl2an | ⊢ ( ( 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ) → ( 𝑊 ↾s 𝐴 ) = if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) ) |
| 22 | 1 21 | eqtrid | ⊢ ( ( 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ) → 𝑅 = if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) ) |