This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017) (Proof shortened by AV, 28-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wunress.1 | |- ( ph -> U e. WUni ) |
|
| wunress.2 | |- ( ph -> _om e. U ) |
||
| wunress.3 | |- ( ph -> W e. U ) |
||
| Assertion | wunress | |- ( ph -> ( W |`s A ) e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wunress.1 | |- ( ph -> U e. WUni ) |
|
| 2 | wunress.2 | |- ( ph -> _om e. U ) |
|
| 3 | wunress.3 | |- ( ph -> W e. U ) |
|
| 4 | eqid | |- ( W |`s A ) = ( W |`s A ) |
|
| 5 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 6 | 4 5 | ressval | |- ( ( W e. U /\ A e. _V ) -> ( W |`s A ) = if ( ( Base ` W ) C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) ) |
| 7 | 3 6 | sylan | |- ( ( ph /\ A e. _V ) -> ( W |`s A ) = if ( ( Base ` W ) C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) ) |
| 8 | 1 2 | basndxelwund | |- ( ph -> ( Base ` ndx ) e. U ) |
| 9 | incom | |- ( A i^i ( Base ` W ) ) = ( ( Base ` W ) i^i A ) |
|
| 10 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 11 | 10 1 3 | wunstr | |- ( ph -> ( Base ` W ) e. U ) |
| 12 | 1 11 | wunin | |- ( ph -> ( ( Base ` W ) i^i A ) e. U ) |
| 13 | 9 12 | eqeltrid | |- ( ph -> ( A i^i ( Base ` W ) ) e. U ) |
| 14 | 1 8 13 | wunop | |- ( ph -> <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. e. U ) |
| 15 | 1 3 14 | wunsets | |- ( ph -> ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) e. U ) |
| 16 | 3 15 | ifcld | |- ( ph -> if ( ( Base ` W ) C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) e. U ) |
| 17 | 16 | adantr | |- ( ( ph /\ A e. _V ) -> if ( ( Base ` W ) C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) e. U ) |
| 18 | 7 17 | eqeltrd | |- ( ( ph /\ A e. _V ) -> ( W |`s A ) e. U ) |
| 19 | 18 | ex | |- ( ph -> ( A e. _V -> ( W |`s A ) e. U ) ) |
| 20 | 1 | wun0 | |- ( ph -> (/) e. U ) |
| 21 | reldmress | |- Rel dom |`s |
|
| 22 | 21 | ovprc2 | |- ( -. A e. _V -> ( W |`s A ) = (/) ) |
| 23 | 22 | eleq1d | |- ( -. A e. _V -> ( ( W |`s A ) e. U <-> (/) e. U ) ) |
| 24 | 20 23 | syl5ibrcom | |- ( ph -> ( -. A e. _V -> ( W |`s A ) e. U ) ) |
| 25 | 19 24 | pm2.61d | |- ( ph -> ( W |`s A ) e. U ) |