This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a set being a simple path of a fixed length as word. (Contributed by AV, 18-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wspthnp | ⊢ ( 𝑊 ∈ ( 𝑁 WSPathsN 𝐺 ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-wspthsn | ⊢ WSPathsN = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 } ) | |
| 2 | 1 | elmpocl | ⊢ ( 𝑊 ∈ ( 𝑁 WSPathsN 𝐺 ) → ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ) |
| 3 | simpl | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ 𝑊 ∈ ( 𝑁 WSPathsN 𝐺 ) ) → ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ) | |
| 4 | iswspthn | ⊢ ( 𝑊 ∈ ( 𝑁 WSPathsN 𝐺 ) ↔ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) | |
| 5 | 4 | a1i | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝑊 ∈ ( 𝑁 WSPathsN 𝐺 ) ↔ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) ) |
| 6 | 5 | biimpa | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ 𝑊 ∈ ( 𝑁 WSPathsN 𝐺 ) ) → ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) |
| 7 | 3anass | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ↔ ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) ) | |
| 8 | 3 6 7 | sylanbrc | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ 𝑊 ∈ ( 𝑁 WSPathsN 𝐺 ) ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) |
| 9 | 2 8 | mpancom | ⊢ ( 𝑊 ∈ ( 𝑁 WSPathsN 𝐺 ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) |