This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a set being a simple path of a fixed length as word. (Contributed by AV, 18-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wspthnp | |- ( W e. ( N WSPathsN G ) -> ( ( N e. NN0 /\ G e. _V ) /\ W e. ( N WWalksN G ) /\ E. f f ( SPaths ` G ) W ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-wspthsn | |- WSPathsN = ( n e. NN0 , g e. _V |-> { w e. ( n WWalksN g ) | E. f f ( SPaths ` g ) w } ) |
|
| 2 | 1 | elmpocl | |- ( W e. ( N WSPathsN G ) -> ( N e. NN0 /\ G e. _V ) ) |
| 3 | simpl | |- ( ( ( N e. NN0 /\ G e. _V ) /\ W e. ( N WSPathsN G ) ) -> ( N e. NN0 /\ G e. _V ) ) |
|
| 4 | iswspthn | |- ( W e. ( N WSPathsN G ) <-> ( W e. ( N WWalksN G ) /\ E. f f ( SPaths ` G ) W ) ) |
|
| 5 | 4 | a1i | |- ( ( N e. NN0 /\ G e. _V ) -> ( W e. ( N WSPathsN G ) <-> ( W e. ( N WWalksN G ) /\ E. f f ( SPaths ` G ) W ) ) ) |
| 6 | 5 | biimpa | |- ( ( ( N e. NN0 /\ G e. _V ) /\ W e. ( N WSPathsN G ) ) -> ( W e. ( N WWalksN G ) /\ E. f f ( SPaths ` G ) W ) ) |
| 7 | 3anass | |- ( ( ( N e. NN0 /\ G e. _V ) /\ W e. ( N WWalksN G ) /\ E. f f ( SPaths ` G ) W ) <-> ( ( N e. NN0 /\ G e. _V ) /\ ( W e. ( N WWalksN G ) /\ E. f f ( SPaths ` G ) W ) ) ) |
|
| 8 | 3 6 7 | sylanbrc | |- ( ( ( N e. NN0 /\ G e. _V ) /\ W e. ( N WSPathsN G ) ) -> ( ( N e. NN0 /\ G e. _V ) /\ W e. ( N WWalksN G ) /\ E. f f ( SPaths ` G ) W ) ) |
| 9 | 2 8 | mpancom | |- ( W e. ( N WSPathsN G ) -> ( ( N e. NN0 /\ G e. _V ) /\ W e. ( N WWalksN G ) /\ E. f f ( SPaths ` G ) W ) ) |