This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is only a finite number of symbols, the number of words of a fixed length over these symbols is also finite. (Contributed by Alexander van der Vekens, 25-Mar-2018) Remove unnecessary antecedent. (Revised by JJ, 18-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrdnfi | ⊢ ( 𝑉 ∈ Fin → { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashwrdn | ⊢ ( ( 𝑉 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ) = ( ( ♯ ‘ 𝑉 ) ↑ 𝑁 ) ) | |
| 2 | hashcl | ⊢ ( 𝑉 ∈ Fin → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) | |
| 3 | nn0expcl | ⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑉 ) ↑ 𝑁 ) ∈ ℕ0 ) | |
| 4 | 2 3 | sylan | ⊢ ( ( 𝑉 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑉 ) ↑ 𝑁 ) ∈ ℕ0 ) |
| 5 | 1 4 | eqeltrd | ⊢ ( ( 𝑉 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ) ∈ ℕ0 ) |
| 6 | 5 | ex | ⊢ ( 𝑉 ∈ Fin → ( 𝑁 ∈ ℕ0 → ( ♯ ‘ { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ) ∈ ℕ0 ) ) |
| 7 | lencl | ⊢ ( 𝑤 ∈ Word 𝑉 → ( ♯ ‘ 𝑤 ) ∈ ℕ0 ) | |
| 8 | eleq1 | ⊢ ( ( ♯ ‘ 𝑤 ) = 𝑁 → ( ( ♯ ‘ 𝑤 ) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0 ) ) | |
| 9 | 7 8 | syl5ibcom | ⊢ ( 𝑤 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑤 ) = 𝑁 → 𝑁 ∈ ℕ0 ) ) |
| 10 | 9 | con3rr3 | ⊢ ( ¬ 𝑁 ∈ ℕ0 → ( 𝑤 ∈ Word 𝑉 → ¬ ( ♯ ‘ 𝑤 ) = 𝑁 ) ) |
| 11 | 10 | ralrimiv | ⊢ ( ¬ 𝑁 ∈ ℕ0 → ∀ 𝑤 ∈ Word 𝑉 ¬ ( ♯ ‘ 𝑤 ) = 𝑁 ) |
| 12 | rabeq0 | ⊢ ( { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } = ∅ ↔ ∀ 𝑤 ∈ Word 𝑉 ¬ ( ♯ ‘ 𝑤 ) = 𝑁 ) | |
| 13 | 11 12 | sylibr | ⊢ ( ¬ 𝑁 ∈ ℕ0 → { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } = ∅ ) |
| 14 | 13 | fveq2d | ⊢ ( ¬ 𝑁 ∈ ℕ0 → ( ♯ ‘ { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ) = ( ♯ ‘ ∅ ) ) |
| 15 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 16 | 14 15 | eqtrdi | ⊢ ( ¬ 𝑁 ∈ ℕ0 → ( ♯ ‘ { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ) = 0 ) |
| 17 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 18 | 16 17 | eqeltrdi | ⊢ ( ¬ 𝑁 ∈ ℕ0 → ( ♯ ‘ { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ) ∈ ℕ0 ) |
| 19 | 6 18 | pm2.61d1 | ⊢ ( 𝑉 ∈ Fin → ( ♯ ‘ { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ) ∈ ℕ0 ) |
| 20 | wrdexg | ⊢ ( 𝑉 ∈ Fin → Word 𝑉 ∈ V ) | |
| 21 | rabexg | ⊢ ( Word 𝑉 ∈ V → { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ∈ V ) | |
| 22 | hashclb | ⊢ ( { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ∈ V → ( { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ∈ Fin ↔ ( ♯ ‘ { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ) ∈ ℕ0 ) ) | |
| 23 | 20 21 22 | 3syl | ⊢ ( 𝑉 ∈ Fin → ( { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ∈ Fin ↔ ( ♯ ‘ { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ) ∈ ℕ0 ) ) |
| 24 | 19 23 | mpbird | ⊢ ( 𝑉 ∈ Fin → { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ∈ Fin ) |