This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is only a finite number of symbols, the number of words of a fixed length over these sysmbols is the number of these symbols raised to the power of the length. (Contributed by Alexander van der Vekens, 25-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashwrdn | ⊢ ( ( 𝑉 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ) = ( ( ♯ ‘ 𝑉 ) ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdnval | ⊢ ( ( 𝑉 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } = ( 𝑉 ↑m ( 0 ..^ 𝑁 ) ) ) | |
| 2 | 1 | fveq2d | ⊢ ( ( 𝑉 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ) = ( ♯ ‘ ( 𝑉 ↑m ( 0 ..^ 𝑁 ) ) ) ) |
| 3 | fzofi | ⊢ ( 0 ..^ 𝑁 ) ∈ Fin | |
| 4 | hashmap | ⊢ ( ( 𝑉 ∈ Fin ∧ ( 0 ..^ 𝑁 ) ∈ Fin ) → ( ♯ ‘ ( 𝑉 ↑m ( 0 ..^ 𝑁 ) ) ) = ( ( ♯ ‘ 𝑉 ) ↑ ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) ) | |
| 5 | 3 4 | mpan2 | ⊢ ( 𝑉 ∈ Fin → ( ♯ ‘ ( 𝑉 ↑m ( 0 ..^ 𝑁 ) ) ) = ( ( ♯ ‘ 𝑉 ) ↑ ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) ) |
| 6 | hashfzo0 | ⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ♯ ‘ 𝑉 ) ↑ ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) = ( ( ♯ ‘ 𝑉 ) ↑ 𝑁 ) ) |
| 8 | 5 7 | sylan9eq | ⊢ ( ( 𝑉 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( 𝑉 ↑m ( 0 ..^ 𝑁 ) ) ) = ( ( ♯ ‘ 𝑉 ) ↑ 𝑁 ) ) |
| 9 | 2 8 | eqtrd | ⊢ ( ( 𝑉 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ) = ( ( ♯ ‘ 𝑉 ) ↑ 𝑁 ) ) |