This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Form of wlogle where both sides of the equivalence are proven rather than showing that they are equivalent to each other. (Contributed by Mario Carneiro, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlogle.1 | ⊢ ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| wlogle.2 | ⊢ ( ( 𝑧 = 𝑦 ∧ 𝑤 = 𝑥 ) → ( 𝜓 ↔ 𝜃 ) ) | ||
| wlogle.3 | ⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) | ||
| wloglei.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 ≤ 𝑦 ) ) → 𝜃 ) | ||
| wloglei.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 ≤ 𝑦 ) ) → 𝜒 ) | ||
| Assertion | wloglei | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlogle.1 | ⊢ ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | wlogle.2 | ⊢ ( ( 𝑧 = 𝑦 ∧ 𝑤 = 𝑥 ) → ( 𝜓 ↔ 𝜃 ) ) | |
| 3 | wlogle.3 | ⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) | |
| 4 | wloglei.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 ≤ 𝑦 ) ) → 𝜃 ) | |
| 5 | wloglei.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 ≤ 𝑦 ) ) → 𝜒 ) | |
| 6 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑆 ⊆ ℝ ) |
| 7 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ 𝑆 ) | |
| 8 | 6 7 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ ℝ ) |
| 9 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ 𝑆 ) | |
| 10 | 6 9 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ ℝ ) |
| 11 | vex | ⊢ 𝑥 ∈ V | |
| 12 | vex | ⊢ 𝑦 ∈ V | |
| 13 | eleq1w | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝑆 ↔ 𝑥 ∈ 𝑆 ) ) | |
| 14 | eleq1w | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ 𝑆 ↔ 𝑦 ∈ 𝑆 ) ) | |
| 15 | 13 14 | bi2anan9 | ⊢ ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → ( ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ↔ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ) |
| 16 | 15 | anbi2d | ⊢ ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ↔ ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ) ) |
| 17 | breq12 | ⊢ ( ( 𝑤 = 𝑦 ∧ 𝑧 = 𝑥 ) → ( 𝑤 ≤ 𝑧 ↔ 𝑦 ≤ 𝑥 ) ) | |
| 18 | 17 | ancoms | ⊢ ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → ( 𝑤 ≤ 𝑧 ↔ 𝑦 ≤ 𝑥 ) ) |
| 19 | 16 18 | anbi12d | ⊢ ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ 𝑤 ≤ 𝑧 ) ↔ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ 𝑦 ≤ 𝑥 ) ) ) |
| 20 | 19 1 | imbi12d | ⊢ ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ 𝑤 ≤ 𝑧 ) → 𝜓 ) ↔ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ 𝑦 ≤ 𝑥 ) → 𝜒 ) ) ) |
| 21 | vex | ⊢ 𝑧 ∈ V | |
| 22 | vex | ⊢ 𝑤 ∈ V | |
| 23 | ancom | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ↔ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) | |
| 24 | eleq1w | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ 𝑆 ↔ 𝑧 ∈ 𝑆 ) ) | |
| 25 | eleq1w | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝑆 ↔ 𝑤 ∈ 𝑆 ) ) | |
| 26 | 24 25 | bi2anan9 | ⊢ ( ( 𝑦 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ↔ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ) |
| 27 | 23 26 | bitrid | ⊢ ( ( 𝑦 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ↔ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ) |
| 28 | 27 | anbi2d | ⊢ ( ( 𝑦 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ↔ ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ) ) |
| 29 | breq12 | ⊢ ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑧 ) → ( 𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑧 ) ) | |
| 30 | 29 | ancoms | ⊢ ( ( 𝑦 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( 𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑧 ) ) |
| 31 | 28 30 | anbi12d | ⊢ ( ( 𝑦 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ 𝑥 ≤ 𝑦 ) ↔ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ 𝑤 ≤ 𝑧 ) ) ) |
| 32 | equcom | ⊢ ( 𝑦 = 𝑧 ↔ 𝑧 = 𝑦 ) | |
| 33 | equcom | ⊢ ( 𝑥 = 𝑤 ↔ 𝑤 = 𝑥 ) | |
| 34 | 32 33 2 | syl2anb | ⊢ ( ( 𝑦 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( 𝜓 ↔ 𝜃 ) ) |
| 35 | 34 | bicomd | ⊢ ( ( 𝑦 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( 𝜃 ↔ 𝜓 ) ) |
| 36 | 31 35 | imbi12d | ⊢ ( ( 𝑦 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ 𝑥 ≤ 𝑦 ) → 𝜃 ) ↔ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ 𝑤 ≤ 𝑧 ) → 𝜓 ) ) ) |
| 37 | df-3an | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 ≤ 𝑦 ) ↔ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ≤ 𝑦 ) ) | |
| 38 | 37 4 | sylan2br | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ≤ 𝑦 ) ) → 𝜃 ) |
| 39 | 38 | anassrs | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ 𝑥 ≤ 𝑦 ) → 𝜃 ) |
| 40 | 21 22 36 39 | vtocl2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ 𝑤 ≤ 𝑧 ) → 𝜓 ) |
| 41 | 11 12 20 40 | vtocl2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ 𝑦 ≤ 𝑥 ) → 𝜒 ) |
| 42 | 37 5 | sylan2br | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑥 ≤ 𝑦 ) ) → 𝜒 ) |
| 43 | 42 | anassrs | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ 𝑥 ≤ 𝑦 ) → 𝜒 ) |
| 44 | 8 10 41 43 | lecasei | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝜒 ) |