This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of classes for setvar variables. (Contributed by NM, 26-Jul-1995) (Proof shortened by Andrew Salmon, 8-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtocl2.1 | ⊢ 𝐴 ∈ V | |
| vtocl2.2 | ⊢ 𝐵 ∈ V | ||
| vtocl2.3 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | ||
| vtocl2.4 | ⊢ 𝜑 | ||
| Assertion | vtocl2 | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl2.1 | ⊢ 𝐴 ∈ V | |
| 2 | vtocl2.2 | ⊢ 𝐵 ∈ V | |
| 3 | vtocl2.3 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | vtocl2.4 | ⊢ 𝜑 | |
| 5 | 4 | a1i | ⊢ ( 𝑦 = 𝐵 → 𝜑 ) |
| 6 | 3 | pm5.74da | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 = 𝐵 → 𝜑 ) ↔ ( 𝑦 = 𝐵 → 𝜓 ) ) ) |
| 7 | 1 6 5 | vtocl | ⊢ ( 𝑦 = 𝐵 → 𝜓 ) |
| 8 | 5 7 | 2thd | ⊢ ( 𝑦 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) |
| 9 | 2 8 4 | vtocl | ⊢ 𝜓 |