This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Form of wlogle where both sides of the equivalence are proven rather than showing that they are equivalent to each other. (Contributed by Mario Carneiro, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlogle.1 | |- ( ( z = x /\ w = y ) -> ( ps <-> ch ) ) |
|
| wlogle.2 | |- ( ( z = y /\ w = x ) -> ( ps <-> th ) ) |
||
| wlogle.3 | |- ( ph -> S C_ RR ) |
||
| wloglei.4 | |- ( ( ph /\ ( x e. S /\ y e. S /\ x <_ y ) ) -> th ) |
||
| wloglei.5 | |- ( ( ph /\ ( x e. S /\ y e. S /\ x <_ y ) ) -> ch ) |
||
| Assertion | wloglei | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlogle.1 | |- ( ( z = x /\ w = y ) -> ( ps <-> ch ) ) |
|
| 2 | wlogle.2 | |- ( ( z = y /\ w = x ) -> ( ps <-> th ) ) |
|
| 3 | wlogle.3 | |- ( ph -> S C_ RR ) |
|
| 4 | wloglei.4 | |- ( ( ph /\ ( x e. S /\ y e. S /\ x <_ y ) ) -> th ) |
|
| 5 | wloglei.5 | |- ( ( ph /\ ( x e. S /\ y e. S /\ x <_ y ) ) -> ch ) |
|
| 6 | 3 | adantr | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> S C_ RR ) |
| 7 | simprr | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> y e. S ) |
|
| 8 | 6 7 | sseldd | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> y e. RR ) |
| 9 | simprl | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> x e. S ) |
|
| 10 | 6 9 | sseldd | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> x e. RR ) |
| 11 | vex | |- x e. _V |
|
| 12 | vex | |- y e. _V |
|
| 13 | eleq1w | |- ( z = x -> ( z e. S <-> x e. S ) ) |
|
| 14 | eleq1w | |- ( w = y -> ( w e. S <-> y e. S ) ) |
|
| 15 | 13 14 | bi2anan9 | |- ( ( z = x /\ w = y ) -> ( ( z e. S /\ w e. S ) <-> ( x e. S /\ y e. S ) ) ) |
| 16 | 15 | anbi2d | |- ( ( z = x /\ w = y ) -> ( ( ph /\ ( z e. S /\ w e. S ) ) <-> ( ph /\ ( x e. S /\ y e. S ) ) ) ) |
| 17 | breq12 | |- ( ( w = y /\ z = x ) -> ( w <_ z <-> y <_ x ) ) |
|
| 18 | 17 | ancoms | |- ( ( z = x /\ w = y ) -> ( w <_ z <-> y <_ x ) ) |
| 19 | 16 18 | anbi12d | |- ( ( z = x /\ w = y ) -> ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ w <_ z ) <-> ( ( ph /\ ( x e. S /\ y e. S ) ) /\ y <_ x ) ) ) |
| 20 | 19 1 | imbi12d | |- ( ( z = x /\ w = y ) -> ( ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ w <_ z ) -> ps ) <-> ( ( ( ph /\ ( x e. S /\ y e. S ) ) /\ y <_ x ) -> ch ) ) ) |
| 21 | vex | |- z e. _V |
|
| 22 | vex | |- w e. _V |
|
| 23 | ancom | |- ( ( x e. S /\ y e. S ) <-> ( y e. S /\ x e. S ) ) |
|
| 24 | eleq1w | |- ( y = z -> ( y e. S <-> z e. S ) ) |
|
| 25 | eleq1w | |- ( x = w -> ( x e. S <-> w e. S ) ) |
|
| 26 | 24 25 | bi2anan9 | |- ( ( y = z /\ x = w ) -> ( ( y e. S /\ x e. S ) <-> ( z e. S /\ w e. S ) ) ) |
| 27 | 23 26 | bitrid | |- ( ( y = z /\ x = w ) -> ( ( x e. S /\ y e. S ) <-> ( z e. S /\ w e. S ) ) ) |
| 28 | 27 | anbi2d | |- ( ( y = z /\ x = w ) -> ( ( ph /\ ( x e. S /\ y e. S ) ) <-> ( ph /\ ( z e. S /\ w e. S ) ) ) ) |
| 29 | breq12 | |- ( ( x = w /\ y = z ) -> ( x <_ y <-> w <_ z ) ) |
|
| 30 | 29 | ancoms | |- ( ( y = z /\ x = w ) -> ( x <_ y <-> w <_ z ) ) |
| 31 | 28 30 | anbi12d | |- ( ( y = z /\ x = w ) -> ( ( ( ph /\ ( x e. S /\ y e. S ) ) /\ x <_ y ) <-> ( ( ph /\ ( z e. S /\ w e. S ) ) /\ w <_ z ) ) ) |
| 32 | equcom | |- ( y = z <-> z = y ) |
|
| 33 | equcom | |- ( x = w <-> w = x ) |
|
| 34 | 32 33 2 | syl2anb | |- ( ( y = z /\ x = w ) -> ( ps <-> th ) ) |
| 35 | 34 | bicomd | |- ( ( y = z /\ x = w ) -> ( th <-> ps ) ) |
| 36 | 31 35 | imbi12d | |- ( ( y = z /\ x = w ) -> ( ( ( ( ph /\ ( x e. S /\ y e. S ) ) /\ x <_ y ) -> th ) <-> ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ w <_ z ) -> ps ) ) ) |
| 37 | df-3an | |- ( ( x e. S /\ y e. S /\ x <_ y ) <-> ( ( x e. S /\ y e. S ) /\ x <_ y ) ) |
|
| 38 | 37 4 | sylan2br | |- ( ( ph /\ ( ( x e. S /\ y e. S ) /\ x <_ y ) ) -> th ) |
| 39 | 38 | anassrs | |- ( ( ( ph /\ ( x e. S /\ y e. S ) ) /\ x <_ y ) -> th ) |
| 40 | 21 22 36 39 | vtocl2 | |- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ w <_ z ) -> ps ) |
| 41 | 11 12 20 40 | vtocl2 | |- ( ( ( ph /\ ( x e. S /\ y e. S ) ) /\ y <_ x ) -> ch ) |
| 42 | 37 5 | sylan2br | |- ( ( ph /\ ( ( x e. S /\ y e. S ) /\ x <_ y ) ) -> ch ) |
| 43 | 42 | anassrs | |- ( ( ( ph /\ ( x e. S /\ y e. S ) ) /\ x <_ y ) -> ch ) |
| 44 | 8 10 41 43 | lecasei | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ch ) |