This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for wlkd . (Contributed by AV, 7-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkd.p | ⊢ ( 𝜑 → 𝑃 ∈ Word V ) | |
| wlkd.f | ⊢ ( 𝜑 → 𝐹 ∈ Word V ) | ||
| wlkd.l | ⊢ ( 𝜑 → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) | ||
| wlkd.e | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | ||
| Assertion | wlkdlem2 | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkd.p | ⊢ ( 𝜑 → 𝑃 ∈ Word V ) | |
| 2 | wlkd.f | ⊢ ( 𝜑 → 𝐹 ∈ Word V ) | |
| 3 | wlkd.l | ⊢ ( 𝜑 → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) | |
| 4 | wlkd.e | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 5 | fzo0end | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 6 | fveq2 | ⊢ ( 𝑘 = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) | |
| 7 | fvoveq1 | ⊢ ( 𝑘 = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) ) | |
| 8 | 6 7 | preq12d | ⊢ ( 𝑘 = ( ( ♯ ‘ 𝐹 ) − 1 ) → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) } ) |
| 9 | 2fveq3 | ⊢ ( 𝑘 = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) | |
| 10 | 8 9 | sseq12d | ⊢ ( 𝑘 = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) |
| 11 | 10 | rspcv | ⊢ ( ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) |
| 12 | 5 11 | syl | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) |
| 13 | fvex | ⊢ ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ∈ V | |
| 14 | fvex | ⊢ ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) ∈ V | |
| 15 | 13 14 | prss | ⊢ ( ( ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∧ ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ↔ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
| 16 | nncn | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ♯ ‘ 𝐹 ) ∈ ℂ ) | |
| 17 | npcan1 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℂ → ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) = ( ♯ ‘ 𝐹 ) ) | |
| 18 | 16 17 | syl | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) = ( ♯ ‘ 𝐹 ) ) |
| 19 | 18 | fveq2d | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) |
| 20 | 19 | eleq1d | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ↔ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) |
| 21 | 20 | biimpd | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) |
| 22 | 21 | adantld | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ( ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∧ ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) |
| 23 | 15 22 | biimtrrid | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) |
| 24 | 12 23 | syld | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) |
| 25 | 4 24 | syl5com | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) |
| 26 | fvex | ⊢ ( 𝑃 ‘ 𝑘 ) ∈ V | |
| 27 | fvex | ⊢ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ V | |
| 28 | 26 27 | prss | ⊢ ( ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 29 | simpl | ⊢ ( ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 30 | 28 29 | sylbir | ⊢ ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 31 | 30 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 32 | 31 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 33 | 4 32 | mpd | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 34 | 25 33 | jca | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |