This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is a function into a subset of its codomain if all of its values are elements of this subset. (Contributed by AV, 7-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fcdmssb | ⊢ ( ( 𝑉 ⊆ 𝑊 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝑉 ) → ( 𝐹 : 𝐴 ⟶ 𝑊 ↔ 𝐹 : 𝐴 ⟶ 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝑉 ⊆ 𝑊 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝑉 ) → ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝑉 ) | |
| 2 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝑊 → 𝐹 Fn 𝐴 ) | |
| 3 | 1 2 | anim12ci | ⊢ ( ( ( 𝑉 ⊆ 𝑊 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝑉 ) ∧ 𝐹 : 𝐴 ⟶ 𝑊 ) → ( 𝐹 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝑉 ) ) |
| 4 | ffnfv | ⊢ ( 𝐹 : 𝐴 ⟶ 𝑉 ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝑉 ) ) | |
| 5 | 3 4 | sylibr | ⊢ ( ( ( 𝑉 ⊆ 𝑊 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝑉 ) ∧ 𝐹 : 𝐴 ⟶ 𝑊 ) → 𝐹 : 𝐴 ⟶ 𝑉 ) |
| 6 | simpl | ⊢ ( ( 𝑉 ⊆ 𝑊 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝑉 ) → 𝑉 ⊆ 𝑊 ) | |
| 7 | 6 | anim1ci | ⊢ ( ( ( 𝑉 ⊆ 𝑊 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝑉 ) ∧ 𝐹 : 𝐴 ⟶ 𝑉 ) → ( 𝐹 : 𝐴 ⟶ 𝑉 ∧ 𝑉 ⊆ 𝑊 ) ) |
| 8 | fss | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑉 ∧ 𝑉 ⊆ 𝑊 ) → 𝐹 : 𝐴 ⟶ 𝑊 ) | |
| 9 | 7 8 | syl | ⊢ ( ( ( 𝑉 ⊆ 𝑊 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝑉 ) ∧ 𝐹 : 𝐴 ⟶ 𝑉 ) → 𝐹 : 𝐴 ⟶ 𝑊 ) |
| 10 | 5 9 | impbida | ⊢ ( ( 𝑉 ⊆ 𝑊 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝑉 ) → ( 𝐹 : 𝐴 ⟶ 𝑊 ↔ 𝐹 : 𝐴 ⟶ 𝑉 ) ) |