This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A walk is an s-walk "on the edge level" (with s=1) according to Aksoy et al. (Contributed by AV, 5-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wlk1ewlk | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ ( 𝐺 EdgWalks 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 2 | 1 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) |
| 3 | 1 | wlk1walk | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 1 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 4 | wlkv | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) | |
| 5 | 4 | simp1d | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐺 ∈ V ) |
| 6 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 7 | nn0xnn0 | ⊢ ( 1 ∈ ℕ0 → 1 ∈ ℕ0* ) | |
| 8 | 6 7 | mp1i | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 1 ∈ ℕ0* ) |
| 9 | 1 | isewlk | ⊢ ( ( 𝐺 ∈ V ∧ 1 ∈ ℕ0* ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) → ( 𝐹 ∈ ( 𝐺 EdgWalks 1 ) ↔ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 1 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) |
| 10 | 5 8 2 9 | syl3anc | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐹 ∈ ( 𝐺 EdgWalks 1 ) ↔ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 1 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) |
| 11 | 2 3 10 | mpbir2and | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ ( 𝐺 EdgWalks 1 ) ) |