This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A totally ordered set has at most one minimal element. (Contributed by Mario Carneiro, 24-Jun-2015) (Revised by NM, 16-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | somo | ⊢ ( 𝑅 Or 𝐴 → ∃* 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 𝑅 𝑧 ↔ 𝑥 𝑅 𝑧 ) ) | |
| 2 | 1 | notbid | ⊢ ( 𝑦 = 𝑥 → ( ¬ 𝑦 𝑅 𝑧 ↔ ¬ 𝑥 𝑅 𝑧 ) ) |
| 3 | 2 | rspcv | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑧 → ¬ 𝑥 𝑅 𝑧 ) ) |
| 4 | breq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 𝑅 𝑥 ↔ 𝑧 𝑅 𝑥 ) ) | |
| 5 | 4 | notbid | ⊢ ( 𝑦 = 𝑧 → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑧 𝑅 𝑥 ) ) |
| 6 | 5 | rspcv | ⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 → ¬ 𝑧 𝑅 𝑥 ) ) |
| 7 | 3 6 | im2anan9 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑧 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) → ( ¬ 𝑥 𝑅 𝑧 ∧ ¬ 𝑧 𝑅 𝑥 ) ) ) |
| 8 | 7 | ancomsd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑧 ) → ( ¬ 𝑥 𝑅 𝑧 ∧ ¬ 𝑧 𝑅 𝑥 ) ) ) |
| 9 | 8 | imp | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑧 ) ) → ( ¬ 𝑥 𝑅 𝑧 ∧ ¬ 𝑧 𝑅 𝑥 ) ) |
| 10 | ioran | ⊢ ( ¬ ( 𝑥 𝑅 𝑧 ∨ 𝑧 𝑅 𝑥 ) ↔ ( ¬ 𝑥 𝑅 𝑧 ∧ ¬ 𝑧 𝑅 𝑥 ) ) | |
| 11 | solin | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧 𝑅 𝑥 ) ) | |
| 12 | df-3or | ⊢ ( ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧 𝑅 𝑥 ) ↔ ( ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ) ∨ 𝑧 𝑅 𝑥 ) ) | |
| 13 | 11 12 | sylib | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ) ∨ 𝑧 𝑅 𝑥 ) ) |
| 14 | or32 | ⊢ ( ( ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ) ∨ 𝑧 𝑅 𝑥 ) ↔ ( ( 𝑥 𝑅 𝑧 ∨ 𝑧 𝑅 𝑥 ) ∨ 𝑥 = 𝑧 ) ) | |
| 15 | 13 14 | sylib | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑥 𝑅 𝑧 ∨ 𝑧 𝑅 𝑥 ) ∨ 𝑥 = 𝑧 ) ) |
| 16 | 15 | ord | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ¬ ( 𝑥 𝑅 𝑧 ∨ 𝑧 𝑅 𝑥 ) → 𝑥 = 𝑧 ) ) |
| 17 | 10 16 | biimtrrid | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ¬ 𝑥 𝑅 𝑧 ∧ ¬ 𝑧 𝑅 𝑥 ) → 𝑥 = 𝑧 ) ) |
| 18 | 9 17 | syl5 | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑧 ) ) → 𝑥 = 𝑧 ) ) |
| 19 | 18 | exp4b | ⊢ ( 𝑅 Or 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑧 ) → 𝑥 = 𝑧 ) ) ) ) |
| 20 | 19 | pm2.43d | ⊢ ( 𝑅 Or 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑧 ) → 𝑥 = 𝑧 ) ) ) |
| 21 | 20 | ralrimivv | ⊢ ( 𝑅 Or 𝐴 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑧 ) → 𝑥 = 𝑧 ) ) |
| 22 | breq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝑧 ) ) | |
| 23 | 22 | notbid | ⊢ ( 𝑥 = 𝑧 → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 𝑧 ) ) |
| 24 | 23 | ralbidv | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑧 ) ) |
| 25 | 24 | rmo4 | ⊢ ( ∃* 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑧 ) → 𝑥 = 𝑧 ) ) |
| 26 | 21 25 | sylibr | ⊢ ( 𝑅 Or 𝐴 → ∃* 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) |