This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A well-ordering induces a strict ordering on the power set.EDITORIAL: when well-orderings are set like, this can be strengthened to remove A e. V . (Contributed by Stefan O'Rear, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wepwso.t | |- T = { <. x , y >. | E. z e. A ( ( z e. y /\ -. z e. x ) /\ A. w e. A ( w R z -> ( w e. x <-> w e. y ) ) ) } |
|
| Assertion | wepwso | |- ( ( A e. V /\ R We A ) -> T Or ~P A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wepwso.t | |- T = { <. x , y >. | E. z e. A ( ( z e. y /\ -. z e. x ) /\ A. w e. A ( w R z -> ( w e. x <-> w e. y ) ) ) } |
|
| 2 | 2onn | |- 2o e. _om |
|
| 3 | nnord | |- ( 2o e. _om -> Ord 2o ) |
|
| 4 | 2 3 | ax-mp | |- Ord 2o |
| 5 | ordwe | |- ( Ord 2o -> _E We 2o ) |
|
| 6 | weso | |- ( _E We 2o -> _E Or 2o ) |
|
| 7 | 4 5 6 | mp2b | |- _E Or 2o |
| 8 | eqid | |- { <. x , y >. | E. z e. A ( ( x ` z ) _E ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } = { <. x , y >. | E. z e. A ( ( x ` z ) _E ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } |
|
| 9 | 8 | wemapso | |- ( ( R We A /\ _E Or 2o ) -> { <. x , y >. | E. z e. A ( ( x ` z ) _E ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } Or ( 2o ^m A ) ) |
| 10 | 7 9 | mpan2 | |- ( R We A -> { <. x , y >. | E. z e. A ( ( x ` z ) _E ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } Or ( 2o ^m A ) ) |
| 11 | 10 | adantl | |- ( ( A e. V /\ R We A ) -> { <. x , y >. | E. z e. A ( ( x ` z ) _E ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } Or ( 2o ^m A ) ) |
| 12 | elex | |- ( A e. V -> A e. _V ) |
|
| 13 | eqid | |- ( a e. ( 2o ^m A ) |-> ( `' a " { 1o } ) ) = ( a e. ( 2o ^m A ) |-> ( `' a " { 1o } ) ) |
|
| 14 | 1 8 13 | wepwsolem | |- ( A e. _V -> ( a e. ( 2o ^m A ) |-> ( `' a " { 1o } ) ) Isom { <. x , y >. | E. z e. A ( ( x ` z ) _E ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } , T ( ( 2o ^m A ) , ~P A ) ) |
| 15 | isoso | |- ( ( a e. ( 2o ^m A ) |-> ( `' a " { 1o } ) ) Isom { <. x , y >. | E. z e. A ( ( x ` z ) _E ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } , T ( ( 2o ^m A ) , ~P A ) -> ( { <. x , y >. | E. z e. A ( ( x ` z ) _E ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } Or ( 2o ^m A ) <-> T Or ~P A ) ) |
|
| 16 | 12 14 15 | 3syl | |- ( A e. V -> ( { <. x , y >. | E. z e. A ( ( x ` z ) _E ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } Or ( 2o ^m A ) <-> T Or ~P A ) ) |
| 17 | 16 | adantr | |- ( ( A e. V /\ R We A ) -> ( { <. x , y >. | E. z e. A ( ( x ` z ) _E ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } Or ( 2o ^m A ) <-> T Or ~P A ) ) |
| 18 | 11 17 | mpbid | |- ( ( A e. V /\ R We A ) -> T Or ~P A ) |