This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by AV, 9-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oprabexd.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| oprabexd.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| oprabexd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ∃* 𝑧 𝜓 ) | ||
| oprabexd.4 | ⊢ ( 𝜑 → 𝐹 = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) } ) | ||
| Assertion | oprabexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oprabexd.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | oprabexd.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 3 | oprabexd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ∃* 𝑧 𝜓 ) | |
| 4 | oprabexd.4 | ⊢ ( 𝜑 → 𝐹 = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) } ) | |
| 5 | 3 | ex | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∃* 𝑧 𝜓 ) ) |
| 6 | moanimv | ⊢ ( ∃* 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∃* 𝑧 𝜓 ) ) | |
| 7 | 5 6 | sylibr | ⊢ ( 𝜑 → ∃* 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) ) |
| 8 | 7 | alrimivv | ⊢ ( 𝜑 → ∀ 𝑥 ∀ 𝑦 ∃* 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) ) |
| 9 | funoprabg | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∃* 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) → Fun { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) } ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → Fun { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) } ) |
| 11 | dmoprabss | ⊢ dom { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) } ⊆ ( 𝐴 × 𝐵 ) | |
| 12 | 1 2 | xpexd | ⊢ ( 𝜑 → ( 𝐴 × 𝐵 ) ∈ V ) |
| 13 | ssexg | ⊢ ( ( dom { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) } ⊆ ( 𝐴 × 𝐵 ) ∧ ( 𝐴 × 𝐵 ) ∈ V ) → dom { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) } ∈ V ) | |
| 14 | 11 12 13 | sylancr | ⊢ ( 𝜑 → dom { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) } ∈ V ) |
| 15 | funex | ⊢ ( ( Fun { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) } ∧ dom { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) } ∈ V ) → { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) } ∈ V ) | |
| 16 | 10 14 15 | syl2anc | ⊢ ( 𝜑 → { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) } ∈ V ) |
| 17 | 4 16 | eqeltrd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |