This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any relation is a strict ordering of the empty set. (Contributed by NM, 16-Mar-1997) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | so0 | ⊢ 𝑅 Or ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | po0 | ⊢ 𝑅 Po ∅ | |
| 2 | ral0 | ⊢ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) | |
| 3 | df-so | ⊢ ( 𝑅 Or ∅ ↔ ( 𝑅 Po ∅ ∧ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) | |
| 4 | 1 2 3 | mpbir2an | ⊢ 𝑅 Or ∅ |