This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a vertex in a hypergraph has degree 0, the vertex is not adjacent to another vertex via an edge. (Contributed by Alexander van der Vekens, 8-Dec-2017) (Revised by AV, 15-Dec-2020) (Proof shortened by AV, 24-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdushgrfvedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vtxdushgrfvedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| vtxdushgrfvedg.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | ||
| Assertion | vtxduhgr0nedg | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ∧ ( 𝐷 ‘ 𝑈 ) = 0 ) → ¬ ∃ 𝑣 ∈ 𝑉 { 𝑈 , 𝑣 } ∈ 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdushgrfvedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vtxdushgrfvedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | vtxdushgrfvedg.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 5 | 1 4 3 | vtxd0nedgb | ⊢ ( 𝑈 ∈ 𝑉 → ( ( 𝐷 ‘ 𝑈 ) = 0 ↔ ¬ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( 𝐷 ‘ 𝑈 ) = 0 ↔ ¬ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 7 | 2 | eleq2i | ⊢ ( { 𝑈 , 𝑣 } ∈ 𝐸 ↔ { 𝑈 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) |
| 8 | 4 | uhgredgiedgb | ⊢ ( 𝐺 ∈ UHGraph → ( { 𝑈 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝑈 , 𝑣 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 9 | 7 8 | bitrid | ⊢ ( 𝐺 ∈ UHGraph → ( { 𝑈 , 𝑣 } ∈ 𝐸 ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝑈 , 𝑣 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ) → ( { 𝑈 , 𝑣 } ∈ 𝐸 ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝑈 , 𝑣 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 11 | prid1g | ⊢ ( 𝑈 ∈ 𝑉 → 𝑈 ∈ { 𝑈 , 𝑣 } ) | |
| 12 | eleq2 | ⊢ ( { 𝑈 , 𝑣 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ( 𝑈 ∈ { 𝑈 , 𝑣 } ↔ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) | |
| 13 | 11 12 | syl5ibcom | ⊢ ( 𝑈 ∈ 𝑉 → ( { 𝑈 , 𝑣 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 14 | 13 | adantl | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ) → ( { 𝑈 , 𝑣 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 15 | 14 | reximdv | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ) → ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝑈 , 𝑣 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 16 | 10 15 | sylbid | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ) → ( { 𝑈 , 𝑣 } ∈ 𝐸 → ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 17 | 16 | rexlimdvw | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ) → ( ∃ 𝑣 ∈ 𝑉 { 𝑈 , 𝑣 } ∈ 𝐸 → ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 18 | 17 | con3d | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ) → ( ¬ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ¬ ∃ 𝑣 ∈ 𝑉 { 𝑈 , 𝑣 } ∈ 𝐸 ) ) |
| 19 | 6 18 | sylbid | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( 𝐷 ‘ 𝑈 ) = 0 → ¬ ∃ 𝑣 ∈ 𝑉 { 𝑈 , 𝑣 } ∈ 𝐸 ) ) |
| 20 | 19 | 3impia | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ∧ ( 𝐷 ‘ 𝑈 ) = 0 ) → ¬ ∃ 𝑣 ∈ 𝑉 { 𝑈 , 𝑣 } ∈ 𝐸 ) |