This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a vertex in a multigraph has degree 0, the vertex is not adjacent to another vertex via an edge. (Contributed by Alexander van der Vekens, 8-Dec-2017) (Revised by AV, 12-Dec-2020) (Proof shortened by AV, 15-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdushgrfvedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vtxdushgrfvedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| vtxdushgrfvedg.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | ||
| Assertion | vtxdumgr0nedg | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑈 ∈ 𝑉 ∧ ( 𝐷 ‘ 𝑈 ) = 0 ) → ¬ ∃ 𝑣 ∈ 𝑉 { 𝑈 , 𝑣 } ∈ 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdushgrfvedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vtxdushgrfvedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | vtxdushgrfvedg.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | |
| 4 | umgruhgr | ⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph ) | |
| 5 | 1 2 3 | vtxduhgr0nedg | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ∧ ( 𝐷 ‘ 𝑈 ) = 0 ) → ¬ ∃ 𝑣 ∈ 𝑉 { 𝑈 , 𝑣 } ∈ 𝐸 ) |
| 6 | 4 5 | syl3an1 | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑈 ∈ 𝑉 ∧ ( 𝐷 ‘ 𝑈 ) = 0 ) → ¬ ∃ 𝑣 ∈ 𝑉 { 𝑈 , 𝑣 } ∈ 𝐸 ) |