This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The degree of the vertex in a loop-free hypergraph with one vertex is 0. (Contributed by AV, 2-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdlfuhgr1v.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vtxdlfuhgr1v.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| vtxdlfuhgr1v.e | ⊢ 𝐸 = { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } | ||
| Assertion | vtxdlfuhgr1v | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐼 : dom 𝐼 ⟶ 𝐸 ) → ( 𝑈 ∈ 𝑉 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdlfuhgr1v.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vtxdlfuhgr1v.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | vtxdlfuhgr1v.e | ⊢ 𝐸 = { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } | |
| 4 | simpl1 | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐼 : dom 𝐼 ⟶ 𝐸 ) ∧ 𝑈 ∈ 𝑉 ) → 𝐺 ∈ UHGraph ) | |
| 5 | simpr | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐼 : dom 𝐼 ⟶ 𝐸 ) ∧ 𝑈 ∈ 𝑉 ) → 𝑈 ∈ 𝑉 ) | |
| 6 | 1 2 3 | lfuhgr1v0e | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐼 : dom 𝐼 ⟶ 𝐸 ) → ( Edg ‘ 𝐺 ) = ∅ ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐼 : dom 𝐼 ⟶ 𝐸 ) ∧ 𝑈 ∈ 𝑉 ) → ( Edg ‘ 𝐺 ) = ∅ ) |
| 8 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 9 | 1 8 | vtxduhgr0e | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ∧ ( Edg ‘ 𝐺 ) = ∅ ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ) |
| 10 | 4 5 7 9 | syl3anc | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐼 : dom 𝐼 ⟶ 𝐸 ) ∧ 𝑈 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ) |
| 11 | 10 | ex | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐼 : dom 𝐼 ⟶ 𝐸 ) → ( 𝑈 ∈ 𝑉 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ) ) |