This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A vertex in a multigraph has degree 0 if the graph consists of only one vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 2-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | vdumgr0.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | vdumgr0 | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vdumgr0.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | umgruhgr | ⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph ) | |
| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → 𝐺 ∈ UHGraph ) |
| 4 | simp3 | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( ♯ ‘ 𝑉 ) = 1 ) | |
| 5 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 6 | 1 5 | umgrislfupgr | ⊢ ( 𝐺 ∈ UMGraph ↔ ( 𝐺 ∈ UPGraph ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ) |
| 7 | 6 | simprbi | ⊢ ( 𝐺 ∈ UMGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
| 9 | 3 4 8 | 3jca | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ) |
| 10 | simp2 | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → 𝑁 ∈ 𝑉 ) | |
| 11 | eqid | ⊢ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } | |
| 12 | 1 5 11 | vtxdlfuhgr1v | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) → ( 𝑁 ∈ 𝑉 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = 0 ) ) |
| 13 | 9 10 12 | sylc | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = 0 ) |